Graduate Preliminary Examination

Algebra II

18.2.2004: 3 hours

Problem 1. Let q be a prime power. Suppose f is an irreducible polynomial of degree m over \mathbb{F}_{q} , and let α be a root of f.

- (a) Prove that $\alpha \in \mathbb{F}_{q^m}$.
- (b) Prove that α^{q^n} is a root of f in F_{q^m} for all integers n.
- (c) Prove that α , α^q , α^{q^2} , ..., $\alpha^{q^{m-1}}$ are distinct roots of f.

Problem 2. Suppose K is an algebraic extension of a field F. Prove that the following are equivalent:

- K is algebraically closed.
- For every algebraic extension L of F, there is an F-monomorphism from L to K.

Problem 3. Let M be a module over a ring R. An element x of M is called torsion if rx = 0 for some non-zero r in R. Let T(M) be the set of torsion elements of M.

- (a) Prove that, if R is an integral domain, then T(M) is a submodule of M, and M/T(M) has no torsion elements.
- (b) Find an example where T(M) is not a submodule of M.

Problem 4. Let R be a commutative ring with identity, and let M be a non-zero (unitary) R-module. If $m \in M$, let

ord
$$m = \{r \in R : rm = 0\},\$$

and define

 $\mathcal{F} = \{ \operatorname{ord} m : m \in M \setminus \{0\} \}.$

Then \mathcal{F} is partially ordered by \subseteq .

- (a) Prove that $\operatorname{ord} m$ is an ideal of R.
- (b) Prove that every maximal element of \mathcal{F} is a prime ideal.

Graduate Preliminary Examination

Algebra II

18.2.2005: 3 hours

Problem 1. Prove or give a counter-example to the following statement: If M/L and L/K are algebraic extensions of fields, then M/K is algebraic.

Problem 2. Let p be a prime and let $GF(p^m)$ denote the finite field of order p^m .

- (a) Show that for any positive integer m, there exists a finite field of order p^m
- (b) Show that if $GF(p^m)$ is isomorphic to a subfield of $GF(p^n)$, then m divides n.
- (c) Let *E* be the algebraic closure of GF(p). Show that there is an intermediate field *L* between GF(p) and *E* with $|L:GF(p)| = \infty$ and $|E:L| = \infty$

Problem 3. Let R be a commutative ring with identity, I an ideal of R and $L = \{a \in R : aI = 0\}$

(a) Prove that each $a \in L$ induces an *R*-module homomorphism

$$\lambda_a: R/I \to R$$

(b) Using (a), prove that the *R*-modules *L* and $Hom_R(R/I, R)$ are isomorphic.

Problem 4. Let R be a commutative ring with identity, and let M be a unitary R-module. Then M is called:

- torsion-free, if $r \cdot m = 0$ implies either r = 0 or m = 0 where r in R and m in M;
- divisible, if for all m in M and non-zero r in R, there is n in M such that $r \cdot n = m$.

Assume M is torsion-free and non-trivial.

(a) Prove that R is an integral domain. Show that, the hypothesis that M is non-trivial is necessary.

Now let K be the quotient-field of R.

- (b) Prove that $K \otimes_R M$ is torsion-free as a K-module.
- (c) Prove that, if M is divisible, then $\phi : m \mapsto 1 \otimes m$ is an R-module epimorphism from M onto $K \otimes_R M$.

METU - Department of Mathematics Graduate Preliminary Exam

Algebra II

February, 2009

Duration: 180 min.

1. Let α be the real positive 16th root of 3 and consider the chain of intermediate fields

$$\mathbb{Q} \subseteq \mathbb{Q}(\alpha^8) \subseteq \mathbb{Q}(\alpha^4) \subseteq (\alpha^2) \subseteq \mathbb{Q}(\alpha) = F.$$

a) Compute the degrees of these five intermediate fields over \mathbb{Q} and conclude that these fields are all distinct.

b) Show that every intermediate field between \mathbb{Q} and F is one of the above. (Hint: If $\mathbb{Q} \subseteq K \subseteq F$, consider the constant term of the minimal polynomial of α over K).

2. Let p be a prime number and let $w_p = e^{2\pi i/p}$ be the pth root of 1 in \mathbb{C} .

a) Show that Gal $(\mathbb{Q}(w_p)/\mathbb{Q})$ is isomorphic to the multiplicative group \mathbb{Z}_p^* .

b) Let F be a field containing w_p and let a be an element of F which is not the pth power of any element of F. Show that if E is the splitting field of the polynomial $x^p - a \in F[x]$, then Gal (E/F) is isomorphic to the additive group \mathbb{Z}_p .

c) If K is the splitting field of $x^p - 2 \in \mathbb{Q}[x]$, show that $|K : \mathbb{Q}| = p(p-1)$.

3. Let R be a ring. Recall that an R-module P is called projective if for every R-module epimorphism $f: A \to B$ and every R-module homomorphism $g: P \to B$, there exists an R-module homomorphism $h: P \to A$ such that fh = g.

a) Let P be an R-module for a ring R. Show that if there is a free R-module F and an R-module K such that $F \cong K \oplus P$, then P is projective. (You may use the fact that every free module is projective).

b) Let R be a commutative ring. Suppose that R-modules P and Q are projective. Show that $P \otimes_R Q$ is projective.

4. Let R be a ring with unity and suppose that R can be written as the sum $R = \sum_{i=1}^{m} I_i$, where I_i are finitely many (two-sided) ideals of R satisfying $I_i \cap I_j = 0$ whenever $i \neq j$.

a) Prove that, for every simple right *R*-module *M*, there exists a unique subscript k such that $MI_k \neq 0$

b) Show that if $i \neq j$, then every right *R*-module homomorphism $\theta : I_i \to I_j$ is the zero map.

GRADUATE PRELIMINARY EXAMINATION

ALGEBRA II Spring 2010

1. Let *R* be a commutative ring with identity 1 and let *Q* be an injective *R*-module. If $L \xrightarrow{\alpha} M \xrightarrow{\beta} N$ is an exact sequence of *R*-modules and *R*-homomorphisms with the property that $f \circ \alpha = 0$ for an *R*-homomorphism $f : M \longrightarrow Q$, show that there is an *R*-homomorphism $g : N \longrightarrow Q$ with $g \circ \beta = f$.

2. A nonzero left module M (over some ring) is called

• simple, if *M* has no proper nonzero submodule;

• complemented, if every submodule of M is a direct summand of M (that is, for every submodule A of M, there is a submodule B of M such that $M = A \oplus B$, which means M = A + B and $A \cap B = 0$).

- (a) Give an example of a simple module.
- (b) Give an example of a complemented module that is not simple.
- (c) Show that every nonzero submodule of a complemented module is complemented.
- (d) Show that every complemented module has a simple submodule.
- **3.** Suppose K, L, and M are fields, and $K \subseteq L \subseteq M$. Prove or disprove the following statements.
 - (a) If M/L and L/K are normal, then so is M/K.
 - (b) If M/K is normal, then so is M/L.
 - (c) If M/L is normal, then so is M/K.
 - (d) $(K, +) \not\cong (K^*, \cdot)$.
- **4.** Consider the polynomial $f(x) = x^5 6x + 3 \in \mathbb{Q}[x]$
 - (a) Using Eisenstein's criterion, prove that f is irreducible over \mathbb{Q} .
 - (b) Let E be the splitting field of f. Show that there exists $\sigma \in Gal(E/Q)$ of order 5.
 - (c) Prove the following:

There exists $\tau \in Gal(E/Q)$ of order 2 and hence $Gal(E/Q) \cong S_5$.

(Hint : You may assume that f(x) has exactly one pair of complex conjugate roots.)

(d) Is f(x) solvable by radicals over \mathbb{Q} ? Why?

TMS EXAM February 16, 2012 ALGEBRA II

1. Prove that there is no field F such that $F^+ \cong F^*$.

2. Let F be a field with 16 elements.

(i) Show that there exists an element $\alpha \in F$ with $\alpha^4 = \alpha + 1$.

(ii) Find the factorization of $x^3 + x + 1 \in F[x]$ into irreducible polynomials over F.

(iii) Find all subfields of F.

(iv) Does there exist a quadratic, irreducible polynomial over F? Explain your reasoning.

3. Let R be a commutative ring with unity, and let

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

be an exact sequence of R-modules. Let $r, s \in R$ be such that (r, s) = R. Suppose that rA = sC = 0.

(i) Show that the map $\alpha: C \longrightarrow C$ given by $\alpha(c) = rc$ is an isomorphism.

(ii) Show that $g|_{rB}$ is an isomorphism between rB and C.

(iii) Show that $B \cong A \oplus C$.

4. Let R and S be two rings, A a right R-module, C a right S-module and B an (R, S)-bimodule. Show that $\operatorname{Hom}_{S}(A \otimes_{R} B, C)$ and $\operatorname{Hom}_{R}(A, \operatorname{Hom}_{S}(B, C))$ are isomorphic abelian groups.

GRADUATE PRELIMINARY EXAMINATION ALGEBRA II, FEBRUARY 2013

FEBRUARY 14, 2013

1.a. Show that $f(x) = x^3 + x + 1 \in \mathbb{F}_2[x]$ is the unique irreducible polynomial of degree three so that sum of its roots in a splitting field is equal to zero, where \mathbb{F}_2 denotes the field of two elements.

1.b. Show that $E = \mathbb{F}_2[x]/(f(x))$ is the splitting field of f(x), by finding all zeros of $f(x) = x^3 + x + 1$ in E.

1.c. Show that the extension $\mathbb{F}_2 \subseteq E$ is Galois, by determining its Galois group. Describe the action of the elements of the Galois group.

2.a. Construct a Galois field extension K of the field of rational numbers, so that $\mathbb{Q} \subseteq K \subseteq \mathbb{R}$ and the Galois group is isomorphic to the Klein four group $\mathbb{Z}_2 \times \mathbb{Z}_2$.

2.b. Determine the intermediate fields of this extension.

2.c. Show that $\mathbb{Q}(\sqrt[4]{2})$ is a degree four extension of \mathbb{Q} , which is not Galois.

3.a. Let M denote the free \mathbb{Z} -module $\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$. Determine the quotient module M/N, where N is generated by the vectors (1,2,3), (0,-2,5), (2,0,8) and (0,1,2). (Use Smith Normal From.) Calculate the number elements of the quotient module if it is finite.

3.b. Let \mathbb{F} be a field, $R = \mathbb{F}[x]$ the polynomial ring over \mathbb{F} , and $M = R \oplus \cdots \oplus R$ the free *R*-module of rank *n*, for some positive fixed integer *n*. For any $n \times n$ -matrix *A* with entries in the field \mathbb{F} , consider the assocaited matrix $A - xI_{n \times n}$, with entries in the ring *R*, where $I_{n \times n}$ is the $n \times n$ -identity matrix. Let N_A be the submodule of *M* generated by the rows of $A - xI_{n \times n}$. Calculate the quotient modules, M/N_{A_i} , using Smith Normal Form again, for the matrices

$$A_1 = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \end{pmatrix} \quad \text{and} \quad A_2 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2 \end{pmatrix},$$

with entries in the field of rational numbers (i.e., we take $\mathbb{F} = \mathbb{Q}$ and n = 3). Are the quotient modules isomorphic? Relate the quotient modules to the characteristic and the minimal polynomial of the matrices.

FEBRUARY 14, 2013

4. Let R be an integral domain and M an R-module so that for any $r \neq 0 \in R$ and $m \neq 0 \in M$, we have $rm \neq 0$. The R-module M is called divisible if for each $m \in M$ and nonzero element $r \in R$ there exists an element $m' \in M$ such that m = rm'.

4.a. Prove that the direct sum of two divisible *R*-modules is also divisible.

4.b. An *R*-module *M* is called injective, if whenever $i: M \to N$ is an embedding of *R*-modules and $\phi: M \to L$ is an *R*-module homomorphism then there is an *R*-module homomorphism $\Phi: N \to L$ so that $\phi(m) = (\Phi \circ i)(m)$, for all $m \in M$. Prove that an injective *R*-module is divisible.

 $\mathbf{2}$

METU Mathematics Department Graduate Preliminary Examination Algebra II, January 2014

- 1. Let I = (2, x) be the ideal generated by 2 and x in the ring $R = \mathbb{Z}[x]$. Note that the ring $\mathbb{Z}/2\mathbb{Z} \cong R/I$ is naturally an *R*-module.
 - Show that the map $\phi: I \times I \to \mathbb{Z}/2\mathbb{Z}$ defined by

$$\phi(a_0 + a_1x + \ldots + a_nx^n, b_0 + b_1x + \ldots + b_mx^m) = \frac{a_0}{2}b_1 \pmod{2}$$

is R-bilinear.

- Show that $2 \otimes x x \otimes 2$ is nonzero in $I \otimes_R I$.
- 2. Let I_n be the identity matrix of dimension n.
 - Prove that there is no 3×3 matrix A over \mathbb{Q} such that $A^8 = I_3$ but $A^4 \neq I_3$.
 - Write down a 4×4 matrix B over \mathbb{Q} such that $B^8 = I_4$ and $B^4 \neq I_4$.
- 3. Let \mathbb{F}_q be a finite field with q elements and let K/\mathbb{F}_q be a quadratic extension.
 - For any $\alpha \in K$, show that $\alpha^{q+1} \in \mathbb{F}_q$.
 - Show that every element of \mathbb{F}_q is of the form β^{q+1} for some $\beta \in K$.
- 4. Let p be an odd prime and let $L = \mathbb{Q}(\zeta_p)$ be the p-th cyclotomic field.
 - Show that L has a unique subfield K such that $[K : \mathbb{Q}] = 2$.
 - If p = 5, then find an element $\alpha \in L$ such that $L = K(\alpha)$ and $\alpha^2 \in K$.
 - If $p \ge 7$, then show that there is no $\alpha \in L$ such that $L = K(\alpha)$ and $\alpha^{(p-1)/2} \in K$.

Graduate Preliminary Examination

Algebra II

22.9.2004: 3 hours

Problem 1. Let $K_0 = \mathbb{F}_{11}[X]/(X^2 + 1)$ and $K_1 = \mathbb{F}_{11}[Y]/(Y^2 + 2Y + 2)$.

- (a) Show that the K_i are fields for i = 0, 1.
- (b) Find the orders of the K_i for i = 0, 1.
- (c) Either exhibit an isomorphism of K_0 and K_1 , or show that they are not isomorphic.

Problem 2. Show that the sum of all elements of a finite field is zero, except for \mathbb{F}_2 .

Problem 3. Let L/K be a field-extension, and let α be algebraic over K with minimal polynomial f. Let $M = K(\alpha) \otimes_K L$. We know that M is a vector-space over L.

- (a) Exhibit an embedding of L in M (as vector-spaces over L).
- (b) Exhibit an embedding ι of L in M and a multiplication \cdot on M such that the following conditions hold:
 - *M* is a commutative ring with identity;
 - ι is a ring-homomorphism;
 - if $m \in M$ and $\ell \in L$, then $\iota(\ell) \cdot m$ is the product ℓm given by the vector-space structure.
- (c) Show that L[X]/(f) and $K(\alpha) \otimes_K L$ are isomorphic as rings.

Problem 4. Let R be a ring with 1. If M is an R-module, the **uniform** dimension of M (ud M) is the largest integer n such that there is a direct sum $M_1 \oplus \ldots \oplus M_n \subseteq M$ with all the M_i non-zero. If no such integer exists then we say that ud $M = \infty$. If $M \subseteq N$ are R-modules, M is said to be essential in N if every non-zero submodule of N has non-zero intersection with M. Suppose the ud $M < \infty$ and $M \subseteq N$. Prove that M is essential in N if and only if ud M = ud N

PRELIMINARY EXAMINATION ALGEBRA II Fall 2005 September 16th, 2005

Duration: 3 hours

- **1.** Let $f(x) = x^3 2x 2 \in \mathbb{Q}[x]$. Let $K = \mathbb{Q}(\alpha)$ where α is a real root of f, and let F be the Galois closure of the extension K/\mathbb{Q} .
 - a) Determine the group of \mathbb{Q} -automorphisms of K.
 - **b)** Determine the Galois group $G(F/\mathbb{Q})$.
 - c) Determine the Galois group G(F/K).
- **2.** Let K be a field of characteristic p (where p is a prime number). Let $K^p = \{b^p | b \in K\}.$
 - **a)** Show that K^p is a subfield of K and K/K^p is an algebraic extension.
 - **b)** Let $a \in K, a \notin K^p$. Prove that $[K^p(a) : K^p] = p$.
- **3.** Let R be a principal ideal domain, M a free R-module, and S a submodule of M. S is called a pure submodule if

whenever $ay \in S$ (with $a \in R \setminus \{0\}, y \in M$), then $y \in S$.

a) Show that $\{0\}$ and R are the only pure submodules of R, considered as an R-module)

b) Find a proper, nontrivial pure submodule of $R \oplus R$ (considered as an *R*-module).

c) Let N be a torsion-free R-module and $\varphi : M \to N$ be an R-module homomorphism. Prove that $Ker\varphi$ is a pure submodule of M.

4. Let R be a commutative ring with identity. Prove that every submodule of R is free iff $R = \{0\}$ or R is a principal ideal domain. (Warning: To prove that R is a PID, you have to show R is an integral domain first.)

TMS

Fall 2009

ABGEBRA II

1. Let R be a commutative ring with identity, and A, B, C_1, \dots, C_n be R-modules.

a) Assume A is a submodule of B, and B satisfies the ACC on its submodules. Show that B/A satisfies the ACC on its submodules.

b) Assume C_1, \dots, C_n satisfy the ACC on their submodules. Show that their direct sum also satisfies the ACC on its submodules.

c) If the ring R satisfies the ACC on its ideals, then show that every finitely generated R-module satisfies the ACC on its submodules.

- 2. Let M be a left R-module.
 - a) Prove that M is a simple module if and only if M = Rm for all nonzero $m \in M$.
 - b) Prove that M is simple if and only if $M \cong R/I$ for a maximal left ideal $I \subseteq R$.
 - c) Prove that if M is simple, then $\operatorname{End}_R(M)$ is a division ring.
- 3. Let K be a subfield of a finite field L. Describe (as precisely as possible) the group of automorphisms of L when it is considered as:
 - a) a field
 - b) a vector space over K,
 - c) an additive group
- 4. Let $f(x) = x^5 2 \in \mathbb{Q}[x]$.
 - a) Find the order of the Galois group G_f of f(x) over \mathbb{Q} .
 - b) Show that G_f is isomorphic to the group H given by generators a of order 5 and b of order 4, with the relation $ba = a^2b$.

TMS

Fall 2010

Algebra II

- Let R be a principal ideal domain, and let M be a finitely generated module over R. We know that, for some non-negative integers n and s, there are nonzero non-units q₁,..., q_n of R such that q_k | q_{k+1} and M≅ R/(q₁) ⊕ ··· ⊕ R/(q_n) ⊕ R^s.
 - (a) Letting K be the quotient field of R, find the dimension of $M \otimes_R K$ as a vector space over K.
 - (b) Find the greatest integer t such that M has linearly independent elements x_1, \ldots, x_t : this means, if $a_1, \ldots, a_t \in R$ and $a_1x_1 + \cdots + a_tx_t = 0$, then $a_1 = \cdots = a_t = 0$.

Suppose further that R has only one prime ideal different from $\{0\}$, namely (p).

- (a) Give an example of such a ring R.
- (b) Show that R/(p) is a field.
- (c) Show that, for some integers k_i such that $0 < k_1 < \cdots < k_m$, $M \cong R/(p^{k_1}) \oplus \cdots \oplus R/(p^{k_n}) \oplus R^s$.
- (d) Letting L be the field R/(p), find the dimension of M/pM as a vector space over L.
- (e) Find the least integer t for which some subset $\{x_1, \ldots, x_t\}$ of M generates M over R.
- (f) Letting L be the field R/(p), find the dimension of M/pM as a vector space over L.
- (g) Find the least integer t for which some subset $\{x_1, \ldots, x_t\}$ of M generates M over R.
- Suppose E and F are finite extensions of a field K, and E and F are themselves subfields of some large field, so that the compositum EF is well defined: EF E@-[ur]F@-[ul]

K@-[ul]@-[ur] Let us say that E is **free** from F over K if any elements of E that are linearly independent over K are still linearly independent (as elements of EF) over F.

- i. If E is free from F over K, show that F is free from E over K.
- ii. Prove that the following are equivalent:
 - A. E is free from F over K,
 - B. [E:K] = [EF:F],

C.
$$[E:K][F:K] = [EF:K].$$

Suppose now also that E/K is Galois.

- i. Prove that EF/F is Galois.
- ii. Prove that E is free from F over K if and only if $E \cap F = K$.
- 3. Let p be a prime, $q = p^t$ for some $t \ge 1$, $F(q^k)$ denote the field with q^k elements, and $L(q) = \bigcup_{n \ge 1} F(q^{n!})$.
 - (a) Show that L(q) is a field. What is its prime subfield?
 - (b) Show that L(q) is an algebraic extension of F(q).
 - (c) Is L(q) algebraically closed?
- 4. Let U be a right R-module and $X \subseteq U$ be any subset. Then show that
 - (1) $ann_R(X) = \{r \in R | xr = 0 \quad \forall x \in X\}$ is a right ideal of R
 - (2) If X is an R-submodule of U, then $ann_R(X)$ is an ideal of R.
 - (3) If U is simple and $0 \neq x \in U$, then $ann_R(x)$ is a maximal right ideal of R and
 - $U \cong R^{\bullet}/ann_R(x)$ where R^{\bullet} denotes R as an R-module.

M.E.T.U

Department of Mathematics Preliminary Exam - Sep. 2011 ALGEBRA II

Duration : 3 hr.

Each question is 25 pt.

1. Let n be a positive integer and F be a field of characteristic p with $p \not| n$.

Let $f(x) = x^n - a$ for some $0 \neq a \in F$ and E be a splitting field for f(x) over F.

a) Show that f(x) has no multiple roots (that is f(x) has n distinct roots.)

b) Show that E contains a primitive n-th root of unity ϵ .

c) Assume that $\epsilon \in F$. Show that all irreducible factors of factors of f(x) in F[x] have the same degree and [E:F] divides n.

2. Let α be an element of $\mathbb{C} - \overline{\mathbb{Q}}$ where $\overline{\mathbb{Q}}$ is the algebraic closure of \mathbb{Q} in \mathbb{C} .

a) Show that $\mathbb{Q}(\alpha)$ is the field of fractions of the integral domain $\mathbb{Q}[\alpha]$. (Hint : Use the homomorphism $\mathbb{Q}[x] \to \mathbb{C}, \ x \mapsto \alpha$).

b) Show that

• each matrix $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL(2, \mathbb{Q})$ defines an automorphism

$$\Phi_M : \mathbb{Q}(\alpha) \longrightarrow \mathbb{Q}(\alpha) \text{ given by } \alpha \mapsto \frac{a\alpha + b}{c\alpha + d}$$

• and we obtain a group homomorphism $\Psi: GL(2, \mathbb{Q}) \longrightarrow \operatorname{Aut}(\mathbb{Q}(\alpha)), \ \Psi(M) = \Phi_M.$

c) True or false? Explain.

 Ψ in (b) is an isomorphism.

3. Let M be a module over a commutative ring R satisfying the descending chain condition.

Suppose that f is an endomorphism of M. Show that f is an isomorphism if and only if f is a monomorphism.

4. Let R be commutative ring with unity and M be an R-module. For $x \in M$ we define

$$\operatorname{Ann}(x) = \{r \in R : rx = 0\}$$

and we set $T(M) = \{x \in M : \operatorname{Ann}(x) \neq 0\}.$

a) Show that

- If $x \neq 0$, then Ann(x) is a **proper ideal** in *R*.
- If for each maximal ideal \mathbf{p} in R there exists some $r \in \text{Ann}(x)$, $r \notin \mathbf{p}$, then x = 0.
- b) Let R be an integral domain with field of fractions F. Show that
 - T(M) is a submodule of M.
 - T(M) is in the kernel of the map $M \to M \otimes_R F$, $m \mapsto m \otimes 1$.
 - $T(M) = \{0\}$ if M is a **flat** R-module.

c) True or false ? Prove the statement or give a counter example.

For any R and an R-module M, T(M) is a submodule of M.

METU MATHEMATICS DEPARTMENT ALGEBRA II SEPTEMBER 2012 - TMS EXAM

- **1.** Let $f(x) = x^6 + 3 \in \mathbb{Q}[x]$, and let α be a root of f(x) in \mathbb{C} .
- a) Find the splitting field E of f(x) over \mathbb{Q} .
- b) Find the degree of the extension E over \mathbb{Q} .
- c) Find the automorphism group G of E over \mathbb{Q} . Find the lattice of subgroups of G.
- d) Choose one of nontrivial proper subgroups of G and find the intermediate field corresponding to this subgroup explicitly.
- **2.** a) Prove that for a finite field F of characteristic p, the map $u \mapsto u^p$ is an automorphism of F.
 - b) For every integer n, show that the map $u \mapsto u^4 + u$ is an endomorphism of the additive group of the finite field \mathbb{F}_{2^n} , and determine the size of the kernel and image of this endomorphism.
- **3.** Let R be a ring with 1, and let N be a submodule of an R-module M.
- a) Prove that M is torsion if and only if N and M/N are both torsion.
- b) Prove that if N and M/N are both torsion-free, then M is torsion-free. Give an example to show that the converse of this statement is false.
- c) Prove that a free module over a PID is torsion-free. Give an eample to show that the converse of this statement is false.
- 4. Let R be a ring with 1 and let M, N be R-modules.
- a) Prove that if M and N are both free, then $M \otimes_R N$ is free.
- b) Let $f: M \to N$ be an *R*-homomorphism and let *W* be an *R*-module. Show that if *f* is surjective, then the induced map $f \otimes 1_W : M \otimes_R W \to N \otimes_R W$ is surjective. Give an example of M, N, W and an injective map $f: M \to N$ to show that the induced map $f \otimes 1_W$ is not injective.

METU-MATHEMATICS DEPARTMENT GRADUATE PRELIMINARY EXAMINATION ALGEBRA II, SEPTEMBER 2013

SEPTEMBER 17, 2013

1) Suppose that f(x) is irreducible in F[x] and K is a Galois extension of F. Show that all irreducible factors of f(x) in K[x] have the same degree.

2.a) Find the minimal polynomial of $i\sqrt{5} + \sqrt{2} \in \mathbb{C}$ over the rational numbers. Determine the Galois group of the splitting field of the minimal polynomial over the field of rational numbers.

2.b) Find a primitive element over the field of rational numbers for the extension field $K = \mathbb{Q}(\sqrt{5}, \sqrt[3]{4})$.

3.a) Suppose R is a commutative ring and M is an R-module. A submodule N is called pure if $rN = rM \cap N$, for all $r \in R$. Show that any direct summand of M is pure.

3.b) If M is torsion free and N is a pure submodule show that M/N is torsion free.

3.c) If M/N is torsion free show that N is pure.

4.a) Prove that any finitely generated projective module M over a PID R is free.

4.b) Is \mathbb{Z} -module of rational numbers \mathbb{Q} projective? What about the \mathbb{Q} -module of rational numbers \mathbb{Q} ?

METU Mathematics Department Graduate Preliminary Examination Algebra II, Fall 2014

- 1. Let A be an abelian group considered as a \mathbb{Z} -module. If A is finitely generated than show that $A \otimes_{\mathbb{Z}} A \cong A$ if and only if A is cyclic. Is the same statement true if A is not finitely generated?
- 2. Let $T: V \to W$ be a linear transformation of vector spaces over a field \mathbb{F} .
 - (a) Show that T is injective if and only if $\{T(v_1), \ldots, T(v_n)\}$ is a linearly independent set in W for every linearly independent set $\{v_1, \ldots, v_n\}$ in V.
 - (b) Show that T is surjective if and only if $\{T(x) : x \in X\}$ is a spanning set for W for some spanning set X for V.
 - (c) Let $D : \mathbb{F}[x] \to \mathbb{F}[x]$ be the derivative map on polynomials, i.e. D(f(x)) = f'(x), which is a linear transformation. Investigate if D is injective, surjective using the previous parts.
- 3. Let K be the splitting field of the polynomial $x^4 x^2 1$ over \mathbb{Q} .
 - (a) Show that $\sqrt{-1}$ is an element of K.
 - (b) Show that the Galois group of K over \mathbb{Q} is isomorphic to the dihedral group D_8 .
 - (c) Compute the lattice of subfields of K.
- 4. Let \mathbb{F}_q be a finite field of order $q = p^n$ for some prime number p. Show that the set of subfields of \mathbb{F}_q is linearly ordered (i.e. $L_1 \subseteq L_2$ or $L_2 \subseteq L_1$ for every pair of subfields.) if and only if n is a prime power.

METU MATHEMATICS DEPARTMENT GRADUATE PRELIMINARY EXAMINATION ALGEBRA II, SEPTEMBER 2015

SEPTEMBER 29, 2015

1.a) Let R be a commutative ring with unity. A module P over R is called projective, if for every surjective module homomorphism $f: N \to M$ and every module homomorphism $g: P \to M$, there exists a homomorphism $h: P \to N$ such that $f \circ h = g$. Prove that every free R-module P is projective.

b) Show more generally that an *R*-module *P* is projective if and only if there is an *R*-module *N* such that $P \oplus N$ is a free *R*-module.

c) Show that a finitely generated projective \mathbb{Z} -module P is indeed free. (This part of the question can be answered independently from the previous parts.)

2) Let A be a commutative ring with unity and M is a finitely generated A-module. Assume that $f: M \to A^n$ is a surjective homomorphism. Show that ker(f) is also finitely generated. (Hint: Choose a basis $\{e_1, \dots, e_n\}$ for A^n , and let $m_i \in M$ with $f(m_i) = e_i$. Show that M is isomorphic to the direct sum of ker(f) and the submodule generated by m_1, \dots, m_n)

Is it true that a submodule of a finitely generated module is finitely generated?

3.a) Find the splitting field K of the polynomial $f(x) = x^3 - 2 \in \mathbb{Q}[x]$.

b) Determine the Galois group of the extension K/\mathbb{Q} .

c) Show that $\sqrt[3]{2}$ cannot be written as a \mathbb{Q} -linear combination of n^{th} roots of unity for any positive integer n.

4.a) Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial and let $G = Gal(K : \mathbb{Q})$ be the Galois group of its splitting field K. Considering G as a subgroup of S_5 , the symmetric group on five letters, show that G contains a five cycle.

b) Assume further that exactly three roots of f(x) are real. Show that the Galois group G contains a transposition.

c) Is the polynomial f(x) solvable by radicals? (Hint: It is a fact that any subgroup of S_5 that contains a 5-cycle and a transposition is equal to S_5).

METU Mathematics Department Graduate Preliminary Examination Algebra II, February 2016

- 1. Let R be an integral domain.
 - (a) Show that free *R*-modules are torsion free.
 - (b) Exhibit an *R*-module which is finitely generated and torsion free but not free.
 - (c) Suppose that R is a principal ideal domain and let M be a finitely generated R-module. Show that M is torsion free if and only if M is free.
- 2. If $f: A \to A$ is an *R*-module homomorphism such that $f \circ f = f$, then show that

$$A = \operatorname{Ker}(f) \oplus \operatorname{Im}(f).$$

- 3. Let R be a commutative ring with identity. Let I and J be ideals of R. Prove that the R-module $(R/I) \otimes_R (R/J)$ is isomorphic to R/(I + J).
- 4. Let K be the splitting field of the polynomial $f(x) = x^6 + 3$ over \mathbb{Q} . Show that the Galois group of K over \mathbb{Q} is isomorphic to S_3 .
- 5. Let F be a field.
 - (a) Suppose that K is an algebraic extension of F and R is a ring such that $F \subseteq R \subseteq K$. Show that R is a field.
 - (b) Suppose that L = F(x), i.e. the field of rational functions over F. If $u \in L \setminus F$, then show that u is transcendental over F.