Graduate Preliminary Examination Geometry Duration: 3 hours

1. Let S^2 be the unit circle in $\mathbb{R}^3.$ Considering S^2 oriented by outer normal field

a) exhibit a positively oriented basis of the tangent space for each point of S^2 ,

b) determine whether the reflection $F: S^2 \to S^2$ which is given by F(x, y, z) = (x, -y, z) is orientation preserving or not.

2. Let X, Y be smooth vector fields on a smooth manifold M. Then XY defined by (XY)(f) = X(Yf) makes sense as a smooth operator. We know that [X, Y] = XY - YX is a smooth vector field.

a) Show that [fX, gY] = fg[X, Y] + f(Xg)Y - g(Yf)X for all smooth real valued functions f and g on M.

b) Let $(U; x_1, \dots, x_n)$ be a coordinate neighborhod on M and let $\{\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\}$ be the associated coordinate frames. Show that $[\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}] = 0$ for each i, jwith $1 \le i \le n, 1 \le j \le n$.

c) Assuming that dim M = 2, compute the components of [X, Y] in terms of the components of X and Y with respect to a coordinate neighborhood.

 Let F : M → N be a smooth map, q ∈ N a regular value and L = F⁻¹(q) ⊂ M. Show that for any p ∈ L the tangent space T_pL is the kernel of the induced map F_s : T_pM → T_qN.

4. Let w be the 2-form on $\mathbb{R}^3 \setminus (0,0,0)$ given by $w = d(\frac{1}{x^2+y^2+z^2}dy)$.

a) Find the local expression of the pull back of w on M with respect to the local parametrization

 $\begin{array}{rcl} x & = & 2\cos \ u & (1+\cos v)-2 \\ \\ y & = & 2\sin \ u & (1+\cos v) \\ \\ z & = & \sin v & u, v \in (0,2\pi). \end{array}$

METU-MATHEMATICS DEPARTMENT Graduate Preliminary Examinations

Geometry

Duration: 3 hours

February 18, 2005

- 1. Consider the set $M=\{(x,y,z,w)\in \mathbb{R}^4\mid x^2+y^2=1\ ,\ z^2+w^2=1\}\subseteq \mathbb{R}^4$.
 - (a) Prove that M is an (imbedded) submanifold of \mathbb{R}^4 .
 - (b) Describe the tangent vectors of M at an arbitrary point $(a,b,c,d)\in M$.
 - (c) Write down a nowhere vanishing vector field on ${\cal M}$.
 - (d) Let $\omega = (ydx xdy) \land (wdz zdw) \in \Omega(\mathbb{R}^4)$. Show that $\int_M i_{\star}(w) > 0$ where $i : M \to \mathbb{R}^4$ is the inclusion map (Hint: Write a local parametrization for M).
 - (e) A consequence of Poincaré Lemma is that every closed form on \mathbb{R}^n for any n is also exact. Prove that there exists no 4-form $\theta \in \Omega(\mathbb{R}^4)$ with $d\theta = 0$ such that $\int_M i^*(\theta) \neq 0$.
- **2.** Consider the (k-1) dimensional sphere S^{k-1} as a submanifold of S^k via the usual embedding $(x_1, x_2, \ldots, x_k) \to (x_1, x_2, \ldots, x_k, 0)$. Show that the orthogonal complement to $T_p(S^{k-1})$ in $T_p(S^k)$ is spanned by the vector $(0, 0, \ldots, 1)$.
- **3.** Let ω be a compactly supported 2-form

 $w = f_1 \ dx_2 \wedge dx_3 + f_2 \ dx_3 \wedge dx_1 + f_3 \ dx_1 \wedge dx_2$

on \mathbb{R}^3 . Let S be the graph of a function $G : \mathbb{R}^2 \to \mathbb{R}$. Compute the integral $\int_S \omega$, and show that it is equal to $\int_{\mathbb{R}^2} (\vec{F}.\vec{u}) ||\vec{n}|| dx_1 \wedge dx_2$ where $\vec{F} = (f_1, f_2, f_3), \ \vec{u} = \frac{\vec{n}}{\|\vec{n}\|}$ with $\vec{n} = (-\frac{\partial G}{\partial x_1}, -\frac{\partial G}{\partial x_2}, 1)$.

4. Consider the sets

 $M_1 = \{ [u, v, w] \in \mathbb{R}P^2 \mid u^2 + v^2 = w^2 \} \subseteq \mathbb{R}P^2 .$ $M_2 = \{ [u, v, w] \in \mathbb{R}P^2 \mid u^2 - v^2 = w^2 \} \subseteq \mathbb{R}P^2 .$

- (a) Prove that M_1 is an (imbedded) submanifold of $\mathbb{R}P^2$ diffeomorphic to \mathbf{S}^1 (Hint: Consider the image of M_1 under a suitable chart of $\mathbb{R}P^2$).
- (b) Find a diffeomorphism $F : \mathbb{R}P^2 \to \mathbb{R}P^2$ such that $F(M_1) = M_2$.

METU - Mathematics Department Graduate Preliminary Exam-Fall 2010

Geometry

1.a. Let $v_1 = (2, -3, -1)$, $v_2 = (0, 4, 8)$ and $v_3 = (2, 0, 0)$ be vectors in \mathbb{R}^3 . Calculate $(dx \wedge dz)(v_1, v_2)$ and $(dx \wedge dy \wedge dz)(v_1, v_2, v_3)$.

1.b. Let $\omega = (-2x + y) \ dx \wedge dy$, a 2-form on \mathbb{R}^2 , and $f : \mathbb{R}^3 \to \mathbb{R}^2$ be given by $f(r, s, t) = (r - t, r^2 s)$. Calculate $f^*(\omega)$, the pullback of ω by f.

1.c. Repeat Part (b) for the constant function f(r, s, t) = (2, -5), for any $(r, s, t) \in \mathbb{R}^3$.

2.a. Let ω be the 2-form on $\mathbb{R}^3 - \{(0,0,0)\}$ given by

$$\omega = \frac{1}{4\pi} \frac{x \, dy \wedge dz - y \, dx \wedge dz + z \, dx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}}.$$

Show that ω is closed.

2.b. Calculate the integral of ω over the 2-torus shown in the figure below. What would your answer be if the origin were inside the 2-torus?

3.a. Show that the smooth map $\Phi: S^2 \to \mathbb{R}^5$, given by $\Phi(x, y, z) = (x^2, y^2, xy, xz, yz)$ is an immersion, where S^2 is the unit sphere in \mathbb{R}^3 .

3.b. Show that Φ is a 2-to-1 map with $\Phi(x, y, z) = \Phi(-x, -y -, z)$. Conclude that Φ gives a closed embedding of the real projective plane $\mathbb{R}P^2 = S^2 / \sim$, where the equivalence relation \sim on S^2 is defined by, for $p, q \in S^2$ we have $p \sim q$ if and only if p = -q.

4.a. Show that 1 is a regular value of the smooth map $F : \mathbb{R}^4 \to \mathbb{R}$ given by F(a, b, c, d) = ad - bc. Conclude that the set of 2×2 -matrices of determinant one, $SL(2, \mathbb{R})$, is a submanifold of the manifold of all 2×2 -matrices $M(2, \mathbb{R}) = \mathbb{R}^4$. What is the dimension of $SL(2, \mathbb{R})$?

4.b. Is $0 \in \mathbb{R}$ a regular value of the same F? Justify your answer.

DIFFERENTIABLE MANIFOLDS, FEBRUARY 2011 TMS EXAM

FEBRUARY 18, 2011

1.a) Let $\omega = (x + yz) dx \wedge dy + dx \wedge dz$, a 2-form on \mathbb{R}^3 , and $f: \mathbb{R}^2 \to \mathbb{R}^3$ be given by $f(s,t) = (t+s, 2s+e^t)$. Calculate $f^*(\omega)$, the pullback of ω by f.

1.b) Consider the vector field on the space

$$X = 2x\frac{\partial}{\partial x} - xy\frac{\partial}{\partial y} + xz\frac{\partial}{\partial z}.$$

Calculate X(g) for any smooth function $g: \mathbb{R}^3 \to \mathbb{R}$.

2.a) Let ω be the 1-form on $\mathbb{R}^3 - \{(x, y, z) \mid x = 0, y = 0\}$ given by $\omega = \frac{1}{2\pi} \frac{x \, dy - y \, dx}{x^2 + y^2}.$

Show that ω is closed.

2.b) Calculate the integral of ω over the circles shown in the figure below.

$$C_1 = \{ (x, y, z) \in \mathbb{R}^3 \mid z = 0, \ x^2 + y^2 = 1 \} ,$$

$$C_2 = \{ (x, y, z) \in \mathbb{R}^3 \mid x = 1, \ y^2 + z^2 = 1 \}.$$

FEBRUARY 18, 2011

3.a) Prove that the subset $C = \{(x, y, z) \in \mathbb{R}^3 \mid z^2 = x^2 + y^2 + 1\}$ is a smooth manifold by showing that $0 \in \mathbb{R}$ is a regular value for the function $f : \mathbb{R}^3 \to \mathbb{R}$, $f(x, y, z) = z^2 - x^2 - y^2 - 1$. What is its dimension? Describe its tangent space at any point $(a, b, c) \in C$.

3.b) Calculate the differential the smooth map $\Phi: M(n) \to S(n)$, $\Phi(A) = A^t A$, at the identity matrix I_n , where M(n) is the set of all $n \times n$ matrices over reals and S(n) is the set of symmetric real matrices over reals. Is the identity matrix I_n a regular value for Φ ? (Hint: Note that we may regard M(n) as \mathbb{R}^{n^2} and S(n) as $\mathbb{R}^{n(n+1)/2}$.)

4) Consider the 2-form on \mathbb{R}^4 $\omega = dx_1 \wedge dy_1 + dx_2 \wedge dy_2$.

a) Calculate $\omega \wedge \omega$.

b) Can we write $\omega = \nu \wedge \eta$ for some 1-forms ν and η on \mathbb{R}^4 ?

c) Show that ω is closed. Let $S \subseteq \mathbb{R}^4$ be an embedded compact connected and orientable surface without boundary. Calculate the integral $\int_S \omega$.

Differentiable Manifolds TMS EXAM 11 February 2013

Duration: 3 hr.

1. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = x^3 + xy + y^3 + 1$$
.

For which of the points p = (0,0), p = (1/3, 1/3), p = (-1/3, -1/3) is $f^{-1}(f(p))$ an imbedded submanifold in \mathbb{R}^2 ?

- **2.** Let *M* be the hyperboloid of two sheets given by $y^2 z^2 x^2 = 1$.
 - (a) Let $p \in M$. Explain how we can identify T_pM by a subspace of \mathbb{R}^3 using a chart at p.
 - (**b**) Describe $T_p(M)$ as a subspace of \mathbb{R}^3 if $p = (0, 2, \sqrt{3})$.
 - (c) Determine whether the map which assigns to each point q = (x, y, z) the vector (y, x + z, y) is a smooth vector field on M.

3. Let $F: M \to N$ be a smooth function between the manifolds M and N and let a be a smooth function on M.

- (a) Show that $F^*(da) = d(F^*(a))$
- (b) Verify the formula $F^*d = dF^*$ on the forms of type $\phi_1 \wedge \phi_2$ where ϕ_1 and ϕ_2 are 1-forms.
- (c) Let $g: \mathbb{R}^3 \to \mathbb{R}^2$ be given by

$$g(x, y, z) = (xy, x^2yz)$$

Compute $g^*(2xydx \wedge dy)$

4. Let

$$\alpha = \frac{1}{2\pi} \frac{xdy - ydx}{x^2 + y^2}$$

- (a) Prove that α is a closed 1-form on $\mathbb{R}^2 \setminus 0$
- (b) Compute the integral of α over the unit circle S^1 ?
- (c) How does this shows that α is not exact?

Differentiable Manifolds TMS EXAM 13 February 2015

Duration: 3 hr.

1. Let S^2 be the unit sphere in \mathbb{R}^3 . Consider it with the topology relative to \mathbb{R}^3 . Let $i: S^2 \to \mathbb{R}^3$ be the inclusion map.

- (a) Show that i is an immersion.
- (**b**) Is i an embedding? Why?

2. Let M, N be two differentiable manifolds and $f: M \to N$ be a smooth map. Define a new map $F: M \to M \times N$ by F(p) = (p, f(p)).

- (a) Show that F is smooth.
- (b) Show that $F_*(v) = (v, f_*(v))$ where F_* and f_* are induced maps at a point p of M and v is a tangent vector of M at p.
- (c) Show that the tangent space to graph(f) at the point (p, f(p)) is the graph of f_* : $T_p M \to T_{f(p)} N$
- **3.** Consider the 1-form $w = (x^2 + 7y)dx + (-x + y\sin y^2)dy$ on \mathbb{R}^2 .
 - (a) Is w exact? Is it closed?
 - (b) Compute the integral of w over each side of the triangle whose vertices are (0,0), ((1,0), (0,2)) where the sides are oriented in such a way that the triangle is oriented counterclockwise.

4. Let $F: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ be the map F(p) = -p.

- (a) What is the induced map F_* ? Why?
- (b) Show that antipodal map $A: S^n \to S^n$ which is the restriction of F on the *n*-sphere is orientation preserving if and only if n is odd.
- (c) Prove that the real projective space $\mathbb{R}P^n$ is orientable if and only if n is odd.

Graduate Preliminary Examination Differentiable Manifolds Duration: 3 hours

September 26, 2003

1. We identify \mathbb{R}^4 with the set of 2×2 real matrices.

(5 pts.) (a) Show that the set $SL(2, \mathbb{R})$ of 2×2 real matrices whose determinant is equal to 1 is a submanifold of \mathbb{R}^4 . What is its dimension?

(5 pts.) (b) Prove that the tangent space to $SL(2, \mathbb{R})$ at the identity matrix $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, may be identified with the set of matrices of zero trace.

2. (3 pts.) (a) Show that the 1-form $\omega = \frac{xdy - ydx}{x^2 + y^2}$ defined on $\mathbb{R}^2 - \{(0,0)\}$ is closed.

(3 pts.) (b) Calculate the integral $\int_{S^1} \omega$, where S^1 is the unit circle in \mathbb{R}^2 .

(4 pts.) (c) Let Σ be the smooth surface shown below with boundary C. Prove that there is no smooth map $\phi : \Sigma \to S^1$ such that $\phi_{|C} : C \to S^1$, the restriction of ϕ to the boundary C, is a diffeomorphism.

3. Let $f: X \to Y$ is a smooth map between manifolds, f^* is the induced map between the algebras of differential forms of X and Y and d is the exterior derivative.

(5 pts.) (a) Prove that $d \circ f^* = f^* \circ d$.

 $\mathbf{2}$

(5 pts.) (b) If $X = \partial W$ for some compact smooth manifold W, and ω is a closed *n*-form on Y with $n = \dim X$, then show that

$$\int_X f^*(\omega) = 0.$$

4. (10 pts.) A curve in a manifold X is a smooth map $t \mapsto c(t)$ of an interval of \mathbb{R}^1 into X. The velocity vector of the curve c at time t_0 - denoted simply by $\frac{dc}{dt}(t_0)$ is defined to be the vector $dc_{t_0}(1) \in T_{x_0}X$, where $x_0 = c(t_0)$ and $dc_{t_0} : \mathbb{R}^1 \to T_{x_0}X$ is the differential of c at t_0 . In case $X = \mathbb{R}^k$ and $c(t) = (c_1(t), \cdots, c_k(t))$ in coordinates, check that

$$\frac{dc}{dt}(t_0) = (c_1'(t), \cdots, c_k'(t)).$$

Prove that any vector in $T_x X$ is the velocity vector of some curve in X, and conversely.

METU-MATHEMATICS DEPARTMENT Graduate Preliminary Examinations

Geometry

Duration: 3 hours

September 24, 2004

- 1. Consider (0, 2)-tensor field T and a (1, 1)-tensor field S on \mathbb{R}^2 , with the components $T_{i,j} = S_j^i = i j + 2$, i, j = 1, 2, where \mathbb{R}^2 is considered as a manifold with usual coordinates (i.e. with coordinates with respect to the standard basis e_1, e_2)
 - (a) Determine the components $T_{\alpha\beta} S^{\alpha}_{\beta}$ of T and S when the coordinates in \mathbb{R}^2 are considered with respect to the basis $f_1 = e_1 + e_2$ and $f_2 = 2e_1 + e_2$
 - (b) Determine the components of Alt T and Sym T with respect to the basis e_1, e_2).
- 2. For each point p = [u, v, w] on $\mathbb{R}P^2$ define curves γ_p and σ_p by

$$\gamma_p(t) = [u, e^{-t}v, e^{-t}w]$$

$$\sigma_p(t) = [u\cos t - v\sin t, u\sin t + v\cos t, w]$$

for $t \in \mathbb{R}$. Consider the vector fields $A, B \in \mathfrak{X}(\mathbb{R}P^2)$ which assigns the values $\gamma'_p(0)$ and $\sigma'_p(0)$ respectively to each point $p \in \mathbb{R}P^2$

- (a) Introduce a chart of your own choice on $\mathbb{R}P^2$ and find local expressions for A, B on this chart.
- (b) Find local expressions for the Lie bracket [A, B] on the same chart.
- (c) For each point p = [u, v, w] on $\mathbb{R}P^2$ find a curve $\theta_p : \mathbb{R} \to \mathbb{R}P^2$ such that $\theta_p(0) = p$ and [A, B] takes the value $\theta'_p(0)$ at the point $p \in \mathbb{R}P^2$.
- 3. Consider the two dimensional sphere

$$\mathbf{S}^{2} = \{(u, v, w) \in \mathbb{R}^{3} \mid u^{2} + v^{2} + w^{2} = 1\} \subseteq \mathbb{R}^{3}$$

with its usual smooth structure and the smooth maps $f,g:\mathbf{S}^2\to\mathbb{R}$ defined by

$$f((u, v, w)) = w$$

$$g((u, v, w)) = u$$

(a) Evaluate the integral

$$\int_M df \wedge dg$$

where M is the manifold with boundary defined by

$$M = \{ (u, v, w) \in \mathbf{S}^2 \mid v \ge 0 \}$$

without employing Stokes' theorem.

- (b) Use Stokes' theorem to evaluate the same integral.
- 4. Let M be a compact manifold and let $f : M \to N$ be a submersion where N is an arbitrary manifold with dim $M = \dim N$. Define a function $\varphi : N \to \mathbb{R} \cup \{\infty\}$ by

$$\varphi(y) =$$
number of points in $f^{-1}(y)$

- (a) Prove that $\varphi(y)$ is finite for each $y \in N$.
- (b) Prove that $\varphi: N \to \mathbb{R}$ is a locally constant function.

METU - Mathematics Department Graduate Preliminary Exam

Geometry

Duration : 3 hours

Fall 2005

- a) Show that a one-to-one immersion of a compact manifold is an imbedding.
 b) Explain, in full details, why the map φ : (-π, π) → ℝ², φ(s) = (sin(2s), sin(s)) shows that the conclusion in part (a) is false if X is not compact.
- 2. Let SL_n(ℝ) denote the n × n real matrices with determinant 1.
 a) Show that SL_n(ℝ) is a submanifold of the n × n matrices M_n(ℝ).
 b) Show that the tangent space to SL_n(ℝ) at the identity matrix I is T_ISL_n(ℝ) = {A ∈ M_n(ℝ) : trace(A) = 0}.
- 3. a) What is meant by an orientation on a manifold ?
 b) Show that Sⁿ = {x ∈ ℝⁿ⁺¹ : |x| = 1} is an oriented manifold, by defining an orientation on it.

c) Show that the antipodal map $S^n \to S^n$, $\overline{x} \mapsto -\overline{x}$ is orientation preserving if and only if n is odd.

- d) Using (c), or otherwise show that $\mathbb{R}P^n$ is orientable if and only if n is odd.
- 4. a) Show that X = {(x, y, z) ∈ ℝ³ : x² + y² = 1} is a closed submanifold of ℝ³.
 b) Verify that the restriction ω|_X of ω = xdy ydx/(x² + y²) is a closed 1-form on X.
 c) Calculate ∫_S ω|_X, where S is the circle {(x, y, 3) : x² + y² = 1} ⊂ X. Is ω|_X an exact form ? Why ?

d) Consider the mapping $\Psi : \mathbb{R}^2 \to X$, $\Psi((s,t)) = (\cos(s), \sin(s), t)$. Show that Ψ is a differentiable map and that the form $\Psi^*(\omega|_X)$ is exact.

METU - Mathematics Department Graduate Preliminary Exam-Fall 2007

Differentiable Manifolds

1. Let $\Phi: M \to N$ be a submanifold where dim(M) > 1 and let

$$\Phi^*: C^{\infty}(N, \mathbb{R}) \to C^{\infty}(M, \mathbb{R})$$

be the restriction map $f \mapsto f \circ \Phi$.

- a) Show that in general Φ^* is neither injective nor surjective.
- b) Prove that if Φ is a closed imbedding then Φ^* is surjective.
- 2. Consider the vector field $\mathbf{v} = \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$ on \mathbb{R}^2 .
 - a) Find the integral curve of **v** through $(a, b) \in \mathbb{R}^2$.
 - b) Find a smooth map $\mathbb{R}^2 \to \mathbb{R}$ such that the fibers are given by the integral curves of **v**.
 - c) Find a 1-form \mathbf{w} which annihilates \mathbf{v} . Is \mathbf{w} exact?
- 3. Let $S^2 \subset \mathbb{R}^3$ be the unit sphere with its standard smooth manifold structure. For vectors \mathbf{a} , $\mathbf{b} \in \mathbb{R}^3$, let $\mathbf{a} \times \mathbf{b}$ and $\langle \mathbf{a}, \mathbf{b} \rangle$ respectively denote the vector product and the inner product.

a) Let **n** be the outward normal vector on S^2 . Given $\sigma \in \bigwedge^1(S^2)$ defined by

$$\sigma(X) = \langle [1, 1, 1], X \times \mathbf{n} \rangle$$

prove that $\sigma = i^*(\Sigma)$ where $i: S^2 \to \mathbb{R}^3$ is the identity imbedding and

$$\Sigma = (y - z)dx + (z - x)dy + (x - y)dz.$$

b) Find $\Omega \in \bigwedge^2(\mathbb{R}^3)$ such that the volume element $\mathbf{w} \in \bigwedge^2(S^2)$ can be written in the form $\mathbf{w} = i^*(\Omega)$.

c) Does there exist $\theta \in \bigwedge^1(\mathbb{R}^3)$ such that $\mathbf{w} = i^*(d\theta)$? Explain.

- 4. True or false ? Explain (give a counter example if appropriate).
 - a) There exists no compact smooth 2-manifold M which admits an immersion $M \to \mathbb{R}^2$.
 - b) Let M be the compact surface and Γ be the oriented curve given in the figure. If **w** is a 1-form such that $\int_{\Gamma} \mathbf{w} \neq 0$, then **w** is not a closed form.

c) Let M, N be smooth manifolds with dim(N) > dim(M) and let $\Phi : N \to M$ be a non-constant smooth map. If for some $y \in M$ the set $\Phi^{-1}(y)$ is a smooth submanifold of N, then y is a regular value of Φ .

DIFFERENTIABLE MANIFOLDS, SEPTEMBER 2010 TMS EXAM

7

SEPTEMBER 24, 2010

Solution 1.a) Let $\omega = (xy) \ dx \wedge dy$, a 2-form on \mathbb{R}^2 , and $f : \mathbb{R}^3 \to \mathbb{R}^2$ be given by $f(r, s, t) = (r - ts, r^2s + t)$. Calculate $f^*(\omega)$, the pullback of ω by f.

1.b) Consider the vector field on the plane

$$X = 2x\frac{\partial}{\partial x} - xy\frac{\partial}{\partial y}$$

Calculate X(g) for any smooth function $g: \mathbb{R}^2 \to \mathbb{R}$.

1.c) Recall that $H^2_{DR}(S^2) = \mathbb{R}$, which is spanned by the volume form $\omega = x \, dy \wedge dz - y \, dx \wedge dz + z \, dx \wedge dy$. Using the fact that $H^1_{DR}(S^2) = 0$, show that ω cannot be written as a product of two one-forms $\omega = \alpha \wedge \beta$, which are both closed.

 $\begin{array}{l} & \begin{subarray}{ll} \mathcal{O} & \begin{subarray}{ll} \textbf{2.a} \end{pmatrix} \mbox{Let } \omega \mbox{ be the 1-form on } \mathbb{R}^3 - \{(x,y,z) \mid x^2 + y^2 - 1 = 0, \ z = 0\} \\ & \end{subarray} \\ & \end{subarray} \\ & \end{subarray} \omega = \frac{1}{2\pi} \frac{z \ d(x^2 + y^2 - 1) - (x^2 + y^2 - 1) \ dz}{((x^2 + y^2 - 1)^2 + z^2)^{1/2}}. \end{array}$

Show that ω is closed.

J

2.b) Calculate the integral of ω over the circles shown in the figure below.

$$\begin{split} C_1 &= \{(x,y,z) \in \mathbb{R}^3 \mid z=2, \ x^2+y^2=1\} \ , \\ C_2 &= \{(x,y,z) \in \mathbb{R}^3 \mid x=0, \ (y-1)^2+z^2=1\}. \end{split}$$

SEPTEMBER 24, 2010

13.a) Prove that the subset $C = \{(x, y) \in \mathbb{R}^2 \mid y^2 = x(x-1)(x+1)\}$ is a smooth manifold by showing that $0 \in \mathbb{R}$ is a regular value for the function $f : \mathbb{R}^2 \to \mathbb{R}$, $f(x, y) = y^2 - x(x-1)(x+1)$. What is its dimension? Describe its tangent space at any point $(a, b) \in C$.

¹ 2 3.b) Similar to the Part (a) show that the unit sphere $S^2 \in \mathbb{R}^3$ is a smooth manifold of dimension two. Determine its tangent space at any point $(a, b, c) \in S^2$.

4) A one-form α on \mathbb{R}^3 is called a contact form if it satisfies $(\alpha \wedge d\alpha)(p)(e_1, e_2, e_3) > 0$

at any point $p \in \mathbb{R}^3$, where e_i , i = 1, 2, 3, are the standard basis vectors in $T_p \mathbb{R}^3 \simeq \mathbb{R}^3$.

a) Show that the one form $\alpha = x \, dy + dz$ is a contact form on \mathbb{R}^3 .

where $a_1, a_2, a_3, b \in \mathbb{R}$, are some constants. Find necessary and sufficient conditions on these constants so that $f^*(\alpha) = \alpha$.

c) Show that a closed one-form ω on \mathbb{R}^3 cannot be a contact form.

S

2

M.E.T.U

Department of Mathematics Preliminary Exam - Sep. 2011 Geometry

Duration : 3 hr.

Each question is 25 pt.

- 1. a) Let $\omega = (x + y) \ dx \wedge dy$, a 2-form on \mathbb{R}^2 , and $f : \mathbb{R}^3 \to \mathbb{R}^2$ be given by $f(r, s, t) = (r - t + s, e^r + t)$. Calculate $f^*(\omega)$, the pullback of ω by f.
 - **b**) Consider the vector field on the plane

$$X = 2\frac{\partial}{\partial x} - xy\frac{\partial}{\partial y}.$$

Calculate X(g) for any smooth function $g : \mathbb{R}^2 \to \mathbb{R}$. **c)** Calculate the bracket of the vector fields, [X, Y], where $X = 2\frac{\partial}{\partial x} - xy\frac{\partial}{\partial y}$ and $Y = e^y\frac{\partial}{\partial x} + x\frac{\partial}{\partial y}$.

2. a) Consider the real projective plane as the quotient space

$$P: S^2 \to \mathbb{R}P^2 = S^2 / \sim, \ (x, y, z) \mapsto [x: y: z]$$

where \sim is the equivalence relation on the unit two sphere S^2 defined by, $(x_1, y_1, z_1) \sim (x_2, y_2, z_2)$ if and only if $(x_1, y_1, z_1) = -(x_2, y_2, z_2)$. Show that

$$F: \mathbb{R}P^2 \to \mathbb{R}^5, \ [x:y:z] \mapsto (x^2, y^2, xy, yz, zx),$$

is a smooth embedding.

b) Let $\sigma: S^2 \to S^2$ be the antipodal map given by

$$\sigma(x, y, x) = -(x, y, z).$$

Show that for the above map $P: S^2 \to \mathbb{R}P^2$ we have $P = P \circ \sigma$. Let $\omega = x \ dy \wedge dz + y \ dz \wedge dx + z \ dx \wedge dy$ a 2-form on S^2 . Prove that $\omega \neq P^*(\nu)$, for any 2-form ν on the real projective plane.

3. a) Let $f : K \to \mathbb{R}^n$ and $g : L \to \mathbb{R}^n$ be embeddings of smooth manifolds, so that dim $K + \dim L < n$. Consider the smooth mapping

$$\phi: K \times L \to \mathbb{R}^n, \ (p,q) \mapsto f(p) - g(q), \ (p,q) \in K \times L \ .$$

Show that a vector $v \in \mathbb{R}^n$ is a regular value for ϕ is and only if the images of the maps $f: K \to \mathbb{R}^n$ and

$$g + v : L \to \mathbb{R}^n, \ q \mapsto g(q) + v$$

are disjoint.

b) Let $f: S^1 \to \mathbb{R}^3$ and $g: S^1 \to \mathbb{R}^3$ be embeddings of the circle into \mathbb{R}^3 . Using Part (a) conclude that for any $\epsilon > 0$ there is a vector $v \in \mathbb{R}^3$ with $||v|| < \epsilon$, so that the embedded circles $f(S^1)$ and

$$g(S^{1}) + v = \{g(q) + v \mid q \in S^{1}\}$$

are disjoint.

4. A two-form ω on an oriented smooth four manifold, M^4 , is called symplectic if it is both closed, $d\omega = 0$, and satisfies

$$(\omega \wedge \omega)(p)(e_1, e_2, e_3, e_4) > 0,$$

at any point $p \in M$, where e_i , i = 1, 2, 3, 4, are any set ordered basis (giving the chosen orientation of the manifold) vectors in $T_p M^4$.

a) Show that the two form $\omega = dx_1 \wedge dx_2 + dx_3 \wedge dx_4$ is a symplectic form on \mathbb{R}^4 .

b) Show that the above form satisfies $\omega = d\alpha$, for the 1-form

$$\alpha = x_1 \ dx_2 + x_3 \ dx_4 \ .$$

c) Show that a symplectic form ν on a compact oriented four dimensional manifold, M^4 , cannot be an exact form (Hint: Use Stokes theorem).

METU MATHEMATICS DEPARTMENT DIFFERENTIABLE MANIFOLDS SEPTEMBER 2012 - TMS EXAM

SEPTEMBER 17, 2012

1.) Let $f : \mathbb{R}^3 \to \mathbb{R}$ by

$$f(x, y, z) = (x^2 + y^2 + z^2 - r^2 + 1)^2 - 4(x^2 + y^2) ,$$

where 0 < r < 1 is a constant.

- a) Show that $M = f^{-1}(0)$ is a smooth submanifold of \mathbb{R}^3 .
- **b)** Determine the tangent space $T_{(r+1,0,0)}M$ as a subspace of $T_{(r+1,0,0)}\mathbb{R}^3$.

2.) Consider the vector field on \mathbb{R}^3 given by

$$Y = (z - y) \frac{\partial}{\partial x} + (x - z) \frac{\partial}{\partial y} + (y - x) \frac{\partial}{\partial z} \; .$$

a) Show that the restriction of Y to the unit sphere $S^2 \subseteq \mathbb{R}^3$ defines a vector field on the unit sphere.

b) Determine the zeros of the vector field on the sphere.

3.) Consider the quotient topological space

 $M = \mathbb{R}^3 \ / \ (x,y,z) \sim (x+1,y-1,-z) \ , (x,y,z) \in \mathbb{R}^3 \ .$

a) Show that M is a smooth manifold of dimension three.

b) Prove that M is not orientable showing that any 3-form on M has at least one zero.

4.a) Let $f, g: \mathbb{R}^n \to \mathbb{R}$ be smooth functions. Show that the 1-form

$$\omega = \frac{f \, dg - g \, df}{f^2 + g^2} \in \Omega^1(\mathbb{R}^n - Z) \ ,$$

where $Z = \{p \in \mathbb{R}^n \mid f(p) = 0 = g(p)\}$ is the set of common zeros of the functions f and g.

b) Let $\gamma : [0,1] \to \mathbb{R}^n - Z$ be a smooth path such that $f(\gamma(t)) = 1$ for all $t \in [0,1]$, and $g(\gamma(0)) = -1$ and $g(\gamma(1)) = 1$. Calculate the integral

Differentiable Manifolds TMS EXAM September 16, 2013

Duration: 3 hr.

1. Find the tangent space to the surface $S: x^4 - y + z = 1$ at the point p = (1, -1, 1) as a subspace of \mathbb{R}^3 in two different ways:

- (a) Using a local coordinate system at p.
- (b) Exhibiting S as the preimage of a regular value under a map $f : \mathbb{R}^3 \to \mathbb{R}$ and then using the derivative of f (i.e. the induced map f_*).

2. Let $F: P^2(\mathbb{R}) \to P^1(\mathbb{R})$ be the map which is given by $F([x, y, z]) = [xy + x^2, y^2 + z^2]$. (Notation: The class of $x = (x_1, \dots, x_{n+1})$ in $P^n(\mathbb{R})$ is denoted by $[x] = [x_1, \dots, x_{n+1}]$.)

- (a) Show that F is well defined.
- (b) Choose a chart (U, φ) around a point p = [x₀, y₀, z₀] in P²(ℝ) with y₀ ≠ 0 and a chart (V, ψ) around F(p) with F(U) ⊂ V. Write the local expression of F in these charts. Is F smooth at p? Why?
- (c) Compute the rank of the map F.
- 3. Consider the form $\omega = ydx xdy$ in \mathbb{R}^3 .
- (a) Find the local expression of the restriction of this form to the cylinder M : x² + y² = 1
 (i.e. i * (ω) where i : M → ℝ³ is the inclusion map) with respect to any chart of your choice.
- (b) Let η be the form you have found in part (a). Find the local expression of $d\eta$ with respect to the chart you have used in part(a).

4. Let N be the unit ball in \mathbb{R}^3 and let f, g, h be smooth real valued functions defined on \mathbb{R}^3 . Using Stokes Theorem write te the integral of $\omega = f dy \wedge dz + g dz \wedge dx + h dx \wedge dy$ (more precisely the integral of the restriction of this form) over the boundary of N as an integral over N. Also write it as a (iterated) Riemannian integral.

5. Prove the following

- (a) If $F: N \to M$ is a one-to-one immersion and N is compact, then F is an imbedding.
- (b) If $F: N \to M$ is an immersion then each $p \in N$ has a neighborhood U such that F|U is an imbedding of U in M.

METU MATHEMATICS DEPARTMENT PRELIMINARY EXAMINATION GEOMETRY MATH 505

SEPTEMBER 17, 2014

1.) Let ω be the closed 1-form

$$\omega = \frac{x \, dy - y \, dx}{x^2 + y^2} \ \in \ \Omega^1(\mathbb{R}^2 - \{0\}).$$

a) Calculate the integral $\int_{S^1} \omega$, where S^1 is the unit circle in the plane.

b) Use Stokes' Theorem to show that the integral $\int_C \omega = 0$, where $C = \{(x, y) \mid (x - 5)^2 + y^2 = 1\}.$

c) Is there a smooth map $\phi : S^1 \times [0,1] \to \mathbb{R}^2 - \{(0,0)\}$, where $\phi(S^1 \times \{0\}) = S^1$ and $\phi(S^1 \times \{1\}) = C$, so that ϕ is a diffeomorphism when restricted to each of the boundary components of the cylinder? Justify your answer!

2.) Consider the Möbius band as the following quotient manifold

 $MB = \mathbb{R} \times (-1, 1) / (x, y) \sim (x + 1, -y)$.

a) Let $P: \mathbb{R} \times (-1, 1) \to MB$ be the quotient map and

 $\sigma: \mathbb{R} \times (-1, 1) \to \mathbb{R} \times (-1, 1)$

be the map given by $\sigma(x, y) = (x + 1, -y)$. Show that for any smooth function $f : \mathbb{R} \times (-1, 1) \to \mathbb{R}$ satisfying $f = -f \circ \sigma$, there is some $(x_0, y_0) \in \mathbb{R} \times (-1, 1)$ with $f(x_0, y_0) = 0$.

b) Use Part (a) to show that for any 2-form ω on the Möbius band there is some $(x_0, y_0) \in \mathbb{R} \times (-1, 1)$ with $\omega(P(x_0, y_0)) = 0$. Conclude that MB is not orientable.

3.) Show that the subset \mathbb{R}^3 given by

$$T^{2} = \{(x, y, z) \in \mathbb{R}^{3} \mid [(x^{2} + y^{2} + z^{2}) + 3]^{2} = 16(x^{2} + y^{2})\}$$

is a submanifold. Show that it is diffeomorphic to the to the submanifold

 $\{(x_1, y_1, x_2, y_2) \in \mathbb{R}^4 \mid x_1^2 + y_1^2 = 1 = x_2^2 + y_2^2\}$ via the map $F(x, y, z) = (\sqrt{x^2 + y^2} - 2, z, \frac{x}{\sqrt{x^2 + y^2}}, -\frac{y}{\sqrt{x^2 + y^2}})$. Determine F^{-1} .

4.) Let $\omega = f(x, y)dx + g(x, y)dy$ be a one-form on $\mathbb{R}^2 - \{(0, 0)\}$.

a) Let C_R be the circle with center at the origin and radius R > 0, whose parametrization is given by $x = R \cos \theta$, $y = R \sin \theta$, $0 \le \theta \le 2\pi$. Assume that $|f(x,y)| \le \frac{1}{\sqrt[4]{x^2 + y^2}}$ and $|g(x,y)| \le \frac{1}{\sqrt[4]{x^2 + y^2}}$, for all $(x,y) \in \mathbb{R}^2 - \{(0,0)\}$. Show that $|\int_{C_R} \omega| \le 4\pi\sqrt{R}$.

b) Assume that the one-form ω is also closed. Use Stokes' theorem to show that $\int_{C_R} \omega = \int_{C_1} \omega$, for all R > 0.

c) Show that $\int_{C_R} \omega = 0$, for all R > 0. Conclude that ω is an exact form.

 $\mathbf{2}$

GEOMETRY TMS EXAM October 01, 2015

Duration: 3 hours.

(1) Let f: R³ → R⁴ be the map defined by f(x, y, z) = (x² - y², xy, xz, yz). Consider RP² as S²/~ where p ~ -p for all p ∈ S².
a) Write down a chart for RP².
b) Let F: RP² → R⁴ induced by f. Find F_{*}.
c) Is F embedding? Why?

(2) a) Show that the set $SL(2,\mathbb{R})$ of 2×2 real matrices whose determinant is equal to 1 is a submanifold of \mathbb{R}^4 . What is its dimension?

b) Prove that the tangent space to $SL(2,\mathbb{R})$ at the identity matrix A = I may be identified with the set of matrices of zero trace.

(3) Let M be an even dimensional manifold, dim M = 2n. A differential form $\omega \in \Omega^2(M)$ is said to be non-degenerate if

$$\wedge^n \omega := \omega \wedge \dots \wedge \omega \in \Omega^{2n}(M)$$

is a volume form. Show that on a compact orientable manifold M without boundary a non-degenerate 2-form ω cannot be exact.

(4) Let
$$\omega = \frac{xdy - ydx}{2\pi} \in \Omega^1(\mathbb{R}^2)$$
 and $f: S^1 \longrightarrow S^1$ defined by $f(z) = z^k, k \in \mathbb{Z}_+$. Calculate $\int_{S^1} f^*(w).$

(5) On ℝ⁴ with coordinates (x, y, z, w) consider the following vector fields; X₁ = x ∂/∂y - y ∂/∂x and X₂ = y ∂/∂z - z ∂/∂y and 2-form ω = xdx ∧ dy + zdz ∧ dw. Compute the following:
a) [X₁, X₂]

b) $d\omega$

c) $\Phi^*(\omega)$ where $\Phi: \mathbb{R}^2 \longrightarrow \mathbb{R}^4$ is the map $\Phi(t, u) = (t \cos t, u, t \sin t, u)$.

GEOMETRY TMS EXAM February 17, 2016

Duration: 3 hours.

(1) Show that $N = \{ [x : y : z : w] \in \mathbb{R}P^3 | x^3 + y^3 + z^3 + w^3 = 0 \}$ is an embedded submanifold of $\mathbb{R}P^3$, real projective space of dimension 3, and compute its dimension.

(2) Let M be an orientable smooth manifold and fix an orientation for unit circle S^1 . Given a smooth map $\gamma: S^1 \longrightarrow M$ and a differential 1-form $\alpha \in \Omega^1(M)$ define $\int_{\gamma} \alpha := \int_{S^1} \gamma^*(\alpha)$. a) Show that if α is exact then for any $\gamma: S^1 \longrightarrow M$,

$$\int_{\gamma} \alpha = 0.$$

b) Show that if $d\alpha = 0$, and $H: [0,1] \times S^1 \longrightarrow M$ is a smooth map then,

$$\int_{\gamma_0} \alpha = \int_{\gamma_1} \alpha,$$

where $\gamma_0(\theta) = H(0, \theta)$ and $\gamma_1(\theta) = H(1, \theta)$.

(3) Let O(n) denotes the orthogonal $n \times n$ real matrices and M(n) denotes $n \times n$ real matrices. a) Show that the tangent space of O(n) at the identity matrix, $T_IO(n)$ is the space of all anti-symmetric matrices.

b) Show that for any $A \in O(n)$, $T_A O(n) = \{XA | X^T = -X\}$.

c) Show that if $X \in T_IO(n)$ then $e^X \in O(n)$ where $e^X = I + X + \frac{1}{2}X^2 + \frac{1}{3!}X^3 + \cdots$.

d) Consider the smooth map $exp: M(n) \longrightarrow M(n)$, defined as $exp(X) = e^X$. Show that the differential dexp(0) at zero matrix $0 \in M(n)$ is the identity linear transformation.

(4)) Let Z be the preimage of a regular value $y \in Y$ under the smooth map $F: X \longrightarrow Y$ between smooth manifolds X and Y. Prove that the kernel of the derivative $dF_x: T_xX \longrightarrow T_yY$ at any point $x \in Z$ is precisely the tangent space to Z at x, T_xZ .

(5)) Define $F : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ by $F(u, v) = (u, v, u^2 - v^2)$. On \mathbb{R}^2 with coordinates (u, v) consider the following vector fields; $U_1 = u \frac{\partial}{\partial v} - v \frac{\partial}{\partial u}$ and $U_2 = u \frac{\partial}{\partial u}$ and on \mathbb{R}^3 with coordinates (x, y, z) consider 2-form $\omega = ydx \wedge dz + xdy \wedge dz$ and 1-form $\eta = zdx + xdy + ydz$. Compute the following:

a) $F_*[U_1, U_2]$ b) $d\omega$ c) $F^*(d\eta)$ d) $F^*(\omega)(p)[V_1, V_2]$ where $V_1 = (1, 2)$ and $V_2 = (0, 1)$ are the vectors in $T_p \mathbb{R}^2$, for $p = (1, 1) \in \mathbb{R}^2$ e) $\omega_{F(p)}(X_1, X_2)$ where $X_1 = F_*(V_1)$ and $X_2 = F_*(V_2)$.