1. Calculate the QR factorization of the matrix

$$A = \left(\begin{array}{cc} \sqrt{2} & 0\\ 1 & -1\\ 1 & 1 \end{array}\right).$$

(a) using Given's rotation,

(b) Householder's reflection.

- (c) Let A be a symmetric matrix and let λ and x be an eigenvalue-eigenvector pair for A with $||x||_2 = 1$. Let P be an orthogonal matrix for which $Px = e_1 = [1, 0, \dots, 0]^T$ and consider the similar matrix $B = PAP^T$.
 - i. Show that the first row and column of B are zero except for the diagonal element which equals λ .
 - ii. For the matrix

$$A = \begin{bmatrix} 2 & 10 & 2\\ 10 & 5 & -8\\ 2 & -8 & 11 \end{bmatrix}$$

with $\lambda = 9$ as an eigenvalue with associated eigenvector $x = \begin{bmatrix} \frac{2}{3}, \frac{1}{3}, \frac{2}{3} \end{bmatrix}^T$. Produce a Householder matrix P for which $Px = e_1$ and then produce $B = PAP^T$.

iii. By using the matrix B in part (b) find two other eigenvalues of A.

- (d) Let $A \in \mathbf{R}^{n \times n}$ be a symmetric positive definite matrix, $b \in \mathbf{R}^n$, $x^* := A^{-1}b$ and assume that $x \in \mathbf{R}^n$ is some approximation of x^* with r := b - Axdenoting the associated residual.
 - i. Show that

$$a_2(r) \le ||x - x^*||_2 \le C_2(A)a_2(r),$$

where

$$a_2(r) := \frac{\|r\|_2^2}{\|A^T r\|_2}, \ C_2(A) := \sup_{y \neq 0} \frac{\|A^T y\|_2 \|A^{-1} y\|_2}{\|y\|_2^2}.$$

ii. Prove the estimate

$$C_2(A) \le \frac{1}{2}(\kappa_2(A) + \kappa_2^{-1}(A)),$$

where $\kappa_2(A) := ||A^{-1}||_2 ||A||_2$.

[Hint: Use the Kantorovich inequality]

$$\langle By, y \rangle \langle B^{-1}y, y \rangle \leq \frac{(\lambda_{\min}(B) + \lambda_{\max}(B))^2}{4\lambda_{\min}(B)\lambda_{\max}(B)} \parallel y \parallel_2^4$$

for symmetric positive definite matrices $B \in \mathbf{R}^{n \times n}$.]

(e) Consider the linear system of equations Ax = b where $b \in \mathbf{R}^n$ and A is an $n \times n$ matrix given by

$$A = \begin{bmatrix} 4 & 1 & \cdots & \cdots & \cdots \\ 1 & 4 & 1 & \cdots & \cdots \\ \ddots & \ddots & \ddots & \ddots & \ddots \\ \cdots & \cdots & 1 & 4 & 1 \\ \cdots & \cdots & \cdots & 1 & 4 \end{bmatrix},$$

- i. Write down the Jacobi iteration in matrix form for this system.
- ii. Find the rate of convergence of the Jacobi iteration.
- iii. How many iterations are required to reduce the 2-norm error by a factor of 10^{-6} ?

Hint: Eigenvalues of a $n \times n$ tridiagonal matrix

 $\begin{bmatrix} a & b & \cdots & \cdots & \cdots \\ c & a & b & \cdots & \cdots \\ \ddots & \ddots & \ddots & \ddots & \ddots \\ \cdots & \cdots & c & a & b \\ \cdots & \cdots & \cdots & a & b \end{bmatrix},$

are given as

$$\lambda_j = a + 2\sqrt{bc} \cos \frac{j\pi}{n+1}, \quad j = 1, \cdots, n$$

1. Let A and B have order n matrices with A nonsingular. Consider solving the linear system

$$Ax_1 + Bx_2 = b_1$$
$$Bx_1 + Ax_2 = b_2$$

with x_1, x_2, b_1 and $b_2 \in \mathbb{R}^n$.

(a) Find necessary and sufficient conditions for convergence of the iteration method for $m \geq 0$

$$Ax_1^{(m+1)} = b_1 - Bx_2^{(m)}$$
$$Ax_2^{(m+1)} = b_2 - Bx_1^{(m)}$$

(b) Repeat part (a) for the iteration method for $m \ge 0$

$$Ax_1^{(m+1)} = b_1 - Bx_2^{(m)}$$
$$Ax_2^{(m+1)} = b_2 - Bx_1^{(m+1)}$$

- (c) Compare the convergence rates of the two methods given in part (a) and part (b)
- 2. Consider the least square problems of minimizing

$$\rho^2(x) = \|b - Ax\|^2.$$

Here A is $m \times n$ matrix of rank $n, (m \ge n)$ and $\|\cdot\|$ is the Euclidean vector norm. Let

$$A = \begin{pmatrix} Q_1 & Q_2 \end{pmatrix} \begin{pmatrix} R \\ 0 \end{pmatrix}$$

be the QR decomposition of A where Q_1, Q_2 and R are respectively, $m \times n, m \times (m-n)$, and $n \times n$.

- (a) Show that the solution of the least squares problem satisfies the QR equation $Rx = Q_1^T b$ and that the solution is unique. Further show that $\rho(x) = ||Q_2^T b||$.
- (b) Use the QR equation to show that the least square solution satisfies the normal equations $(A^T A)x = A^T b$.

- 3. Given the vector $x = (0 \ 0 \ 0 \ 3 \ 4)^T$, by using Householder transformation, calculate a matrix Q for which Qx will have zeroes in its **last two** positions.
- 4. Let A be a nonsingular matrix whose leading principal submatrices are all nonsingular. Partition A as

$$A = \left(\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array}\right),$$

where A_{11} is , say $k \times k$.

- (a) Is A_{11} singular or nonsingular? Explain.
- (b) Show that there is exactly one matrix M such that

$$\begin{pmatrix} I_{k\times k} & 0\\ -M & I_{(n-k)\times(n-k)} \end{pmatrix} \begin{pmatrix} A_{11} & A_{12}\\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12}\\ 0 & \tilde{A}_{22} \end{pmatrix}$$

- (c) Give the explicit formulas for M and \tilde{A}_{22}
- (d) Show that \tilde{A}_{22} is nonsingular.
- (e) Let $A_{11} = L_1U_1$ and $\tilde{A}_{22} = L_2U_2$ be the *LU* factorization of A_{11} and \tilde{A}_{22} , respectively. Find matrices L_{12} and U_{12} such that *LU* decomposition of *A* is

$$A = \begin{pmatrix} L_1 & 0 \\ L_{12} & L_2 \end{pmatrix} \begin{pmatrix} U_1 & U_{12} \\ 0 & U_2 \end{pmatrix}$$

- 1. Prove that for invertible square real matrices A and B, the followings hold
 - (a) $||A^{-1} B^{-1}|| \le ||A^{-1}|| ||B A|| ||B^{-1}||.$
 - (b) If $B = A + \delta A$ is the perturbed matrix and $\|\delta A\| \|B^{-1}\| = \delta < 1$ then

$$||A^{-1}|| \le \frac{1}{1-\delta} ||B^{-1}||$$

and

$$||A^{-1} - B^{-1}|| \le \frac{\delta}{1-\delta} ||B^{-1}||.$$

(c) If
$$x = A^{-1}b$$
 and $x + \delta x = (A + \delta A)^{-1}b$ then

$$\begin{split} \|\delta x\| &\leq \quad \frac{\delta}{1-\delta} \, \|x+\delta x\| \\ \|\delta x\| &\leq \quad \frac{\epsilon}{1-\epsilon} \, \|x\| \end{split}$$

where

$$\delta = \|\delta A\| \|B^{-1}\| < 1, \qquad \epsilon = \|\delta A\| \|A^{-1}\| < 1.$$

(Note: The norms for matrices and vectors are any compatible matrix and vector norms.)

2. (a) In iteratively solving the linear system Ax = b (det $A \neq 0$), we generate a sequence $x^{(k)}$ by the formula

$$x^{(k+1)} = x^{(k)} + wP^{-1}r^{(k)}$$

starting with some initial guess $x^{(0)}$. Here, P is a nonsingular matrix, w > 0 be a constant and $r^{(k)} = b - Ax^{(k)}$ is the residual vector. Show that the method converges if $w|\lambda|^2 < 2\alpha$ for any complex eigenvalue $\lambda = \alpha + i\beta$ of $P^{-1}A$.

(b) Obtain a convergent iterative sequence using the method given in part (a) with a suitable choice of w for solving Ax = b (carry out 2 iterations with $x^{(0)} = [0, 0]^T$ and P is the identity matrix) where

$$A = \begin{bmatrix} 0 & 2 \\ -1 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$$

3. Let $\{p_j(x)\}_{j=0}^k$ be the set of orthonormal polynomials (*j*-th degree) on an interval [a, b] with the inner product $\langle h, g \rangle = \int_a^b h(x)g(x)dx$ for continuous functions h and g on [a, b] and the norm is

$$||g|| = \langle g, g \rangle^{1/2}$$

If $p_k^*(x) = \sum_{j=0}^k \langle f, p_j \rangle p_j(x)$ is the best least squares approximation to a continuous function f(x) on [a, b], then show that

- (a) $\lim_{k \to \infty} ||f p_k^*|| = 0,$ (b) $||f - p_n^*||^2 = \sum_{j=n+1}^{\infty} \langle f, p_j \rangle^2.$
- 4. Let

$$\left(\begin{array}{rrrr} 8 & 1 & 0\\ 1 & 4 & \epsilon\\ 0 & \epsilon & 1 \end{array}\right), \quad -1 < \epsilon < 1.$$

- (a) Find LU factorization of A.
- (b) Find Cholesky factorization of A, if any exits.
- (c) Give estimates based on Gerschgorin's theorem for the eigenvalues of A.
- (d) Show that it is positive definite.

- 1. Consider the matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Find the Jacobi and Gauss-Seidel iteration matrices and their eigenvalues λ_i and μ_i , respectively. Show that $\mu_{max} = \lambda_{max}^2$
- 2. Consider the real system of linear equations

$$Ax = b$$

where A is non singular and satisfies

for all real v, where the Euclidean inner product is used here.

- (a) Show that (v, Av) = (v, Mv) for all real v where $M = \frac{1}{2}(A + A^T)$ is symmetric part of A.
- (b) Prove that

$$\frac{(v, Av)}{(v, v)} \ge \lambda_{min}(M) > 0$$

where $\lambda_{\min}(M)$ is the minimum eigenvalue of M.

3. An overdetermined system Ax = b, (m > n) is written as

$$\left[\begin{array}{c} R\\ 0 \end{array}\right] x \approx \left[\begin{array}{c} b_1\\ b_2 \end{array}\right]$$

where $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $R \in \mathbb{R}^{n \times n}$, $b_1 \in \mathbb{R}^n$, $b_2 \in \mathbb{R}^{(m-n)}$, and $0 \in \mathbb{R}^{(m-n) \times n}$. Show that the least square solution x can be obtained from

 $Rx = b_1$

and the residual vector r = b - Ax satisfies

 $||r||_2^2 = ||b_2||_2^2$.

4. (a) Describe the singular value decomposition (SVD) of the matrix $A \in \mathbb{C}^{m \times n}$. Include an explanation of the rank of A and how the SVD relates to the four fundamental subspaces

R(A) Range of A, $R(A^*)$ Range of A^*

- N(A) Nullspace of A, $N(A^*)$ Nullspace of A^*
- (b) Perform SVD on the matrix

$$A = \left(\begin{array}{rrr} 2 & 1\\ 2 & -1\\ 1 & 0 \end{array}\right)$$

(c) Compute the pseudo-inverse of A (the Moore-Penrose pseudo-inverse). Leave in factored form.

1. Consider the matrix

$$A = \left(\begin{array}{cc} 1 & 0\\ 0 & 1\\ 1 & 0 \end{array}\right).$$

Using any method you like, determine the reduced and full $QR\mbox{-}{\rm factorization}$ of A

2. Consider the linear system of equations Ax = b with

$$A = \left(\begin{array}{rrr} 1 & a & a \\ a & 1 & a \\ a & a & 1 \end{array}\right).$$

a can be positive or negative.

- (a) Find the range of values of a will the Jacobi method always convergent by computing the exact eigenvalues of the iteration matrix ?
- (b) Find the range of values of *a* will the Gauss-Seidel method always convergent by estimating the eigenvalues of the iteration matrix using Gerschgorin's circle theorem?

3. Assume that $A \in \mathbb{C}^{mxn}$ with m > n has a full rank. Show how to choose ϵ so that the 2-norm condition number of

$$B = \begin{pmatrix} A \\ \epsilon^{1/2}I \end{pmatrix} \qquad (I \ nxn \ identity \ matrix)$$

is equal to the square root of the 2-norm condition number of A.

(Hint: Consider B^*B and the singular value decomposition of A).

4. (a) Assume $A^T A x = A^T b$ and $(A^T A + E)\hat{x} = A^T b$ with $2||E||2 \le \sigma_n(A)^2$. Show that if r = b - Ax and $\hat{r} = b - A\hat{x}$, then

$$\hat{r} - r = (I - A(A^T A + E)^{-1}A^T)Ax$$

and

$$||\hat{r} - r||_2 \le 2\kappa_2(A) \frac{||E||_2}{||A||_2} ||x||_2.$$

(b) Assume $A^T A x = A^T b$ and $A^T A \hat{x} = A^T b + e$ where $||e||_2 \le \epsilon ||A^T||_2 ||b||_2$ and A has full column rank. Show that

$$\frac{||x - \hat{x}||_2}{||x||_2} \le \epsilon \kappa_2(A)^2 \frac{||A^2||_2||b||_2}{||A^Tb||_2}.$$

.

Graduate Preliminary Examination Numerical Analysis I Duration: 3 Hours

1. To produce QR factorization of

$$A = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 2 & -1 & -1 \\ 2 & -4 & 5 \end{array} \right].$$

- (a) use Householder transformation,
- (b) Gram-Schmidt orthogonalization.

2. For solving the linear system of equations Ax = b you are given the iterative equations

$$x^{(k+1)} = Bx^{(k)} + c, \quad k = 0, 1, 2, \cdots$$

with an initial vector $x^{(0)}$ and a known vector c. The $n \times n$ iteration matrix B satisfies

$$\sum_{i=1}^{n} |b_{ij}| \le M < 1, \qquad j = 1, 2, \cdots, n.$$

Show that the iteration converges to x for any starting vector $x^{(0)}$ (i.e. show that $\lim_{k\to\infty} e^{(k)} = \lim_{k\to\infty} |x^{(k)} - x| = 0$).

- 3. Let Ax = b, of order n, be uniquely solvable as $x = A^{-1}b$.
 - (a) If \hat{x} denotes the approximate solution of the system relative to small perturbations in the right hand side b, show that

$$\frac{\|r\|}{\|A\|} \le \|e\| \le \|A^{-1}\| \|r\|$$

where $e = x - \hat{x}$ (the error) and $r = b - A\hat{x}$ (the residual). $\|\cdot\|$ denotes any matrix or vector norm.

(b) If C is the computed inverse of A, define the residual matrix by

$$R = I - CA$$

and show that

7

$$|| e || \le \frac{|| Cr ||}{1 - || R ||}$$

where $e = x - \hat{x}$, $r = b - A\hat{x}$ and again \hat{x} is the approximate solution to Ax = b.

4. Suppose that $Q = I + YTY^T$ is orthogonal where $Y \in R^{n \times j}$ and $T \in R^{j \times j}$ is upper triangular. Show that if $Q_+ = QP$ where $P = I - 2vv^T/v^Tv$ is a Householder matrix, then Q_+ can be expressed in the form $Q_+ = I + Y_+T_+Y_+^T$ where $Y_+ \in R^{n \times (j+1)}$ and $T_+ \in R^{(j+1) \times (j+1)}$ is upper triangular.

 •	· · · · · · · · ·	 ·	 -# ' -	1 - E	 ·		,	 ·
						-		

	·	 	 (0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1	·· · · ·		

\mathbf{TMS}

Spring 2010

NUMERICAL ANALYSIS I

- 1- Consider the problem of solving a nonsingular linear system Ax = b.
 - (a) If the entries of A are given with perturbations (error) δA such that

$$(A + \delta A)(x + \delta x) = b$$

where δx is the perturbation in the solution vector x due to the perturbations in the matrix A, **prove that**

$$||\delta x|| \le \frac{\epsilon}{1-\epsilon} ||x||$$

where $\epsilon = ||\delta A|| ||A^{-1}|| < 1$ and $|| \cdot ||$ is any matrix or vector norm.

(b) If the right hand side vector b is given with perturbation δb as

$$A(x+\delta x) = b+\delta b$$

where δx now, is the perturbation in the solution x due to the perturbation in b, **prove that**

$$\frac{||\delta b||}{||A||} \le ||\delta x|| \le ||A^{-1}|| \, ||\delta b||.$$

2- Let A and B are matrices with size $n \times n$ and A is nonsingular. Consider solving the linear system

$$Az_1 + Bz_2 = b_1$$
$$Bz_1 + Az_2 = b_2$$

with $z_1, z_2, b_1, b_2 \in \mathbb{R}^n$ and b_1, b_2 are given. Find the condition for convergence of the iteration method

$$Az_1^{(m+1)} = b_1 - Bz_2^{(m)}$$

 $m \ge 0$
 $Az_2^{(m+1)} = b_2 - Bz_1^{(m)}$

where m is the iteration number.

3- Consider the two-step Newton method for

$$y_k = x_k - \frac{f(x_k)}{f'(x_k)}, \qquad x_{k+1} = y_k - \frac{f(y_k)}{f'(y_k)}$$

where k is the iteration number $(k \ge 0)$. Show that, the iteration converges **cubically** to a simple root ζ of f(x) = 0.

4- Let

$$A = \begin{bmatrix} 6 & 2 & 1 \\ 1 & -5 & 0 \\ 2 & 1 & 4 \end{bmatrix}$$

- (a) Using Gershgorin's Theorem show that the eigenvalues of A satisfies the inequality 1 ≤ |λ| ≤ 9.
- (b) Using Gershgorin's Theorem prove that all eigenvalues of a diagonally dominant matrix are non-zero.
- (c) Using **power method** with $x_0 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}^T$ compute the absolutely largest eigenvalue and corresponding eigenvector approximately (perform 3 iterations).

1. Consider the following single shift QR algorithm applied to a matrix $A \in \mathbb{R}^{m \times m}$:

 $T^{(0)} = A$ for k = 1, 2, ... $T^{(k-1)} - \sigma^{(k-1)}I = Q^{(k)}R^{(k)}$ (QR decomposition) $T^{(k)} = R^{(k)}Q^{(k)} + \sigma^{(k-1)}I$ end(k)

where the shifts are given by $\sigma^{(k-1)} = (T^{(k-1)})_{m,m}$ for all $k \ge 1$. Assume that none of the shifts correspond to an eigenvalue of the matrix A and the diagonal coefficients of the matrices $R^{(k)}$ produced during the decomposition of $T^{(k-1)} - \sigma^{(k-1)}I$ are nonnegative. For $k \ge 1$ define the matrices

$$Q_k = Q^{(1)}Q^{(2)}\dots Q^{(k)}$$
 and $R_k = R^{(k)}R^{(k-1)}\dots R^{(1)}$.

- (a) Show that the sequence of matrices $T^{(k)}$ generated by single shift QR algorithm is orthogonally similar to the initial matrix A.
- (b) Show that

$$\prod_{j=0}^{k-1} (A - \sigma^{(j)}I) = Q_k R_k \quad \text{for} \quad k \ge 1.$$

(c) Verify that the first column of Q_k is

$$Q_k e_1 = \frac{1}{(R_k)_{1,1}} \Big[\prod_{j=0}^{k-1} (A - \sigma^{(j)}I) \Big] e_1$$

That is $Q_k e_1$ is essentially the vector obtained by using a shifted power iteration starting with e_1 .

(d) Suppose A is symmetric. Verify that the last column of Q_k is

$$Q_k e_m = (R_k)_{m,m} \Big[\prod_{j=0}^{k-1} (A - \sigma^{(j)}I) \Big]^{-1} e_m.$$

That is $Q_k e_m$ is essentially the vector obtained by using a shifted inverse power iteration starting with e_m .

- 2. Let A be an $m \times n$ matrix $(m \ge n)$.
 - (a) Define the concepts of a full QR factorization of A and the concept of a reduced QR factorization of A.
 - (b) Describe the method of Householder triangulations for computing a reduced QR factorization of A.
 - (c) Let A be an matrix $n \times n$ and let a_j be its j^{th} column. Use a QR factorization of A to show that

$$|detA| \leq \prod_{j=1}^{n} ||a_j||_2.$$

3. Let $A \in \mathbf{R}^{n \times n}$ be symmetric positive definite. The iteration for solving the system Ax = b is defined by

$$x^{k+1} = x^k - \alpha(Ax^k - b) \quad k \ge 0.$$

Assume that the eigenvalues of A satisfy $0 < \lambda_1 \leq \lambda_2 \ldots \leq \lambda_n$.

- (a) Show that the iteration converges if and only if $0 < \alpha < \frac{2}{\lambda_n}$.
- (b) Show that the optimal choice of α is $\frac{2}{\lambda_1 + \lambda_n}$.
- (You might use 2-norm).
- 4. Let $A \in \mathbb{C}^{m \times n}$ with m > n.
 - (a) Show that $A^*A + \epsilon I$ is Hermitian and positive definite for every positive value of ϵ .
 - (b) Assume A has full rank. Show how to choose ϵ so that the 2- norm condition number of

$$B = \left(\begin{array}{c} A\\ \epsilon^{1/2}I \end{array}\right),$$

where I is a $n \times n$ identity matrix, is equal to the square root of the 2-norm condition number of A.

(c) Use the reduced SVD of A to express the solution x to the problem

$$\min \left\| \left(\begin{array}{c} A \\ \epsilon^{1/2} I \end{array} \right)^{\flat} - \left(\begin{array}{c} b \\ 0 \end{array} \right) \right\|_2,$$

where b is a $m \times 1$ vector.

GOOD LUCK!!!

1. Consider the iterative method

$$x^{(k+1)} = Ax^{(k)} + b$$

where $A = \begin{bmatrix} 5 & 3/2 \\ 4 & 4 \end{bmatrix}$ and b is an arbitrary vector.

- (a) Does this iteration converge for arbitrary initial vectors, $x^{(0)}$.
- (b) Find α , if possible, so that the following iteration converges for arbitrary initial vectors, $x^{(0)}$:

$$y^{(0)} = x^{(0)}$$

$$x^{(k+1)} = Ay^{(k)} + b$$

$$y^{(k+1)} = \alpha y^{(k)} + (1-\alpha)x^{(k+1)}$$

where A is the matrix given above.

2. Show that the singular values of the following matrices are the same as their eigenvalues

	2	0	0			4	2	1	
A =	0	6	0	,	B =	2	8	0	
	0	0	7 _			1	0	8	

(Hint:Compute the singular value decomposition of the matrices A and B).

3. The quantity A is going to be computed

$$A = \frac{x^3 \sqrt{y}}{z^2}$$

with the values

$$x = 8.36, \quad y = 80.46, \quad z = 25.8$$

where the absolute errors are

 $e_x = 0.01$, $e_y = 0.02$, $e_z = 0.03$, for x, y, and z, respectively.

- (a) Find the upper bound for the relative error Rel_A of A.
- (b) Find the absolute error e_A in A.

4. Consider the $n \times n$, nonsingular matrix A. The Frobenious norm of A is given by

$$||A|| = \left(\sum_{i,j} |a_{i,j}|^2\right)^{1/2}$$

- (a) Construct the perturbation δA , with smallest Frobenious norm such that $A \delta A$ is singular. (Hint: you might use of the primary decompositions of A)
- (b) What is the Frobenious norm of this special δA ?
- (c) Prove that it is the smallest such perturbation?

1. (a) Suppose $A \in \mathbb{C}^{m \times m}$ and $\lambda_1, \dots, \lambda_m \in \mathbb{C}$ are eigenvalues of A. Prove that

$$tr(A) = \sum_{j=1}^{m} \lambda_j$$

- (b) Prove that, if A is Hermitian, then there is a unitary matrix U and a diagonal matrix D such that $U^*AU = D$
- (c) Prove that, if A is a real symmetric matrix, then there is an orthogonal matrix O and a diagonal matrix D such that $O^T A O = D$
- 2. We wish to solve Ax = b iteratively where

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Show that for this A the Jacobi method and the Gauss-Seidel method both converge. Explain why for this A one of these methods is better than the other.

3. Suppose $A \in \mathbb{R}^{n \times n}$ and $\|\cdot\|$ denotes a matrix norm (Not necessarily induced by a vector norm) which also satisfies the compatibility property: for all $B \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{n \times n}$,

$$||BC|| \le ||B|| ||C||.$$

Let $\rho(A)$ denote the spectral radius of A.

- (a) Show that for $\rho(A) \le ||A||$ and then, that $\rho(A) \le ||A^k||^{1/k}$.
- (b) Show that for any given $0 < \epsilon << 1$,

$$\lim_{k \to \infty} \frac{\|A^k\|}{(\rho(A) + \epsilon)^k} = 0.$$

Thus, conclude that $\lim_{k\to\infty} \|A^k\|^{1/k} \leq \rho(A)$. (*Hint: You might use the fact that there exists an operator norm* $\|A\|_{\epsilon,A}$ such that $\|A\|_{\epsilon,A} \leq \rho(A) + \epsilon/2$, for all $\epsilon > 0$)

(c) From parts (a) and (b) what can you say about

$$\lim_{k \to \infty} \|A^k\|^{1/k}$$

4. Let A be a real symmetric $n \times n$ matrix having the eigenvalues λ_1 with

$$|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|$$

and the corresponding eigenvectors x_1, \dots, x_n with $\chi_i^T \chi_k = \delta_{ik}$. Starting with an initial vector y_0 for which $x_i^T y_0 \neq 0$, suppose one computes

$$y_{k+1} := \frac{1}{\|Ay_k\|} Ay_k$$
 for $k = 0, 1, 2, \cdots$

with an arbitrary vector norm $\|\cdot\|$, and concurrently the quantities

$$q_{ki} := \frac{(Ay_k)_i}{(y_k)_i}, \quad 1 \le i \le n, \quad \text{in case} \ (y_k)_i \ne 0,$$

and the Rayleigh quotient

$$r_k := \frac{y_k^T A y_k}{y_k^T y_k}$$

Prove the following:

- (a) $q_{ki} = \lambda_1 [1 + O((\lambda_2/\lambda_1)^k)]$ for all i with $(x_1)_i \neq 0$.
- (b) $r_k = \lambda_1 [1 + O((\lambda_2/\lambda_1)^{2k})].$

1. (a) Show that the following matrix formula (where $q \in \mathbb{R}$) can be used to calculate A^{-1} when the process

$$x^{(n+1)} = x^{(n)} + q(\mathbf{A}x^{(n)} - \mathbf{I})$$

converges.

- (b) When $\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, give the values of q for which the process in (a) can be used. Which q yields the fastest convergence?
- (c) Let **A** be a symmetric and positive definite $n \times n$ matrix with smallest eigenvalue λ_1 , and greatest eigenvalue λ_2 . Find q to get as fast convergence as possible ?
- [Hint: Fastest convergence is obtained when the spectral radius is minimized].
- 2. Given an $\mathbb{R}^{n \times m}$ matrix **A** with singular value decomposition $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathbf{T}}$. Let \mathbf{A}^{\dagger} be the pseudo-inverse matrix of \mathbf{A} .
 - (a) Verify that the singular value decomposition of \mathbf{A}^{\dagger} is $\mathbf{A}^{\dagger} = \mathbf{V}\mathbf{D}^{+}\mathbf{U}^{T}$, where \mathbf{D}^+ is the transpose of \mathbf{D} with every non-zero entry replaced by its reciprocal.

(b) If
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 2 \end{bmatrix}$$
, find the SVD of \mathbf{A} .

Ε.

- (c) For the matrix **A** in part b), calculate \mathbf{A}^{\dagger} through the SVD of \mathbf{A}^{\dagger} .
- 3. Let x be the solution of $A\mathbf{x} = \mathbf{b}$, where A is square and invertible. Carry out the perturbation analysis when *both* the matrix A and the vector **b** is perturbed. Let $\tilde{\mathbf{x}} = \mathbf{x} + \delta \mathbf{x}$ such that $(A + \delta A)\tilde{\mathbf{x}} = \mathbf{b} + \delta \mathbf{b}$. Prove the following estimate:

$$\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq \frac{\kappa(A)}{1 - \kappa(A) \frac{\|\delta A\|}{\|A\|}} \left(\frac{\|\delta A\|}{\|A\|} + \frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|} \right),$$

provided that δA is sufficiently small, in our case assume that $||A^{-1}|| \cdot ||\delta A|| < 1$. The matrix norm is the induced norm obtained from the vector norm used and $\kappa(A) = \|A\| \cdot \|A^{-1}\|.$

- 4. Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix where eigenvalues are given by $\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_n$. Suppose that $\beta \in \mathbb{R}$ and the vector $x \in \mathbb{C}^n$, $x \neq 0$ are such that $d = Ax \beta x$. Then,
 - (a) Show that

$$\min_{1 \le \mu \le n} |\beta - \lambda_{\mu}| \le \frac{\|d\|_2}{\|x\|_2}.$$

[Hint: Since A is Hermitian, the corresponding eigenvectors x_1, x_2, \cdots, x_n form an orthonormal basis for \mathbb{C}^{n}].

(b) Apply this result to the matrix

$$A = \left[\begin{array}{rrrr} 6 & 4 & 3 \\ 4 & 6 & 3 \\ 3 & 3 & 7 \end{array} \right]$$

with $\beta = 12$ and $x = (0.9, 1, 1.1)^T$ where A has eigenvalues $\lambda_1 = 13$, $\lambda_2 = 4$ and $\lambda_3 = 2$.