Graduate Preliminary Examination
Ordinary Differential Equations
(3 hours)

February 16, 2011

1. Let o1 = g1 (x) = 22 and ya = yo(z) = 2°.

(a) Verify that y1 and yq are linearly independent functions on (0, c0).

{b) Find functions () and ha(z) such that {y;,y2} is a fundamental set of solutions for the
second order linear homogenecus equation

Y’ + hy(2)y + ho(z)y = 0.

{c) Solve the equation found in part (b) with the initial condition y(1} = 1,3'(1) = —2. Hint:
Use the general solution.

2. Consider the following scalar differential equation

2/ () = x(ln x)?, (1)

(a) Determine the equilibrium, z* > 0, of the equation (1).

(b) Find the explicit solution z{t,0,20) and determine its domain.
Consider {a) 0 < zp < z*,(b) wp = z*,(c) zo> x".

(c) Can you investigate stability of the equilibrium , z*, by applying the linearization technique?
If not, why? '

(d) Can you investigate the stability by some another method? Show that the equilibrium is
unstable. ‘

3. Consider the system

% _ A)e+ f(2) @)

dt
where z € R®, A(t) is a continuous periodic, n X n, matrix of peried w, f(z) is continuous in
some region about z = (3, and all Floquet multipliers of the system
dy

= = Alt)y (%)

are inside of the unit circle.



{a) The state transition matrix &(¢,s) = W(t)¥~1(s) of (*) satisfies
1@, 8)|| < Ke™ol9) ¢ > s,

where K and « are some positive numbers, and ¥(¢) is a fundamentat matrix of (¥*).

(b) If the inequality || f(2)|| < Ll|2|| is valid, and KL < o, then the trivial solution, z = 0, of
(2) is asymptotically stabfe.

Hint: Apply the Floguet theory and Gronwall inequality.

4. (a) State the Sturm-Picone comparison theorem.

ZE"-k(lw%)m:O

has a sequence of zeros {t,} that is unbounded from above.

(b) Show that every solution of

(c) Show also that limy, o0 [t — ta—1]| = 7.



METU
Department of Mathematics
GRADUATE PRELIMINARY EXAM
Ordinary Differential Equations — February, 2014

Last Name :
Name :

Q.1 Consider the linear ODE: z' = a(t)z + b(t), where a{t) and b(t) are continuous
real functions on £ > 0. Prove the following statements:

(a) The solution, satisfying z(fp) = z¢ € R for any o > 0, is given by

¢
m(t) —_ 3308‘{:0 G(S}ds + f b(u)ef'z a{s)dsdu
to
(b) If a(t) < —m < 0 and b(t) is bounded on ¢ 2> 0, then any solution is bounded
ontz> (.

(c) If a(t) = m > 0 and b(¢t) is bounded on ¢ > 0, then there exists one and only
one solution bounded on ¢ > 0, which is given by

2(t) = — f b(u)e i o)y
t

Q.2 Let k(i) € C({O,oo],]ﬁi*’) and let g(z) € C({0,00),R™). Suppose that

B
lim gz = 400, A>0.
B—oo J4 g(z)

Then consider the IVP: %% = h(t)g(z), o(r) =¢ with 7> 0and { > 0.

(a) Show that all solutions can be continued to the right over the entire interval
Tt <0,

(b) If [;°h(t)dt < oo, show that any solution of the IVP has a finite limit as
t -+ 0C.

(¢) If lim,_,o+ fel 5%% = 400, show that all solutions can be continued to the left
until ¢ = 0.

Q.3 Consider the Linear system with constant coefficients

dz/dt = anz+ awy
dy/dt = anz+ any

. aly e
where the eigenvalues of the matrix A = 1tz

a1 G22
(a) Show that all solutions are closed trajectories (ellipses) surrounding the origin

} are purely imaginary.

in the zy-plane. Hint: First observe that the eigenvalues of A are purely imaginary
if and only if trA = 0 and detA > 0. Then deduce that the system can be converted
into a single equation g—g = f(z,y)}, which is exact.

(b) Show that the equilibrium solution is stable.



Q.4 If a nontrivial solution ¢(t) of ¥” + (A4 + Beos2t)y = 0 has 2n zeros in
(—7/2,7/2) and if A, B > 0, show that A+ B > (2n ~ 1)%.



PRELIMINARY EXAM PROBLEMS
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1. Consider the following IVP
y =ycos(z® +4?), y(0)=1.

where y,z € R

a) Applying the ”existence-uniquenes” theorem, determine a specific interval on which a
unique solution is sure to exist.

b) Determine the largest possible interval (a, 3) on which the solution is defined.

¢) Explain why the solution of the IVP is always positive.

d) Is the solution strictly increasing over its interval of definition? Why? Why not?

2. a) Let y(t) be a solution of 3y’ — e~y = 0.
Show that y(¢) can not vanish twice.

b) Prove that every solution of y” + (1 + a(t))y = 0 has infinitely many zeros,
if
lim a(t) = 0.

t—oo

3. Suppose that all solutions of y” +a(t)y = 0 are bounded. Show that if [ |b(t)|dt < oo, then
all solutions of " + (a(t) + b(t))y = 0 are also bounded.

4. Using Lyapunov function show that the zero solution of the system
o = 22123 — 23,
ThH = —x9 + TITo (1)

is uniform asymptotically stable.
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1. Consider the IVP

/ 1 .
T = —;:cz + sint,

, 1
Ty = ;ml + cost,

Show that the IVP has a unique solution defined on (0, c0).

2. Let p(t) be continuous function defined on [1,00) such that

oo
/ Ip(t) — c|dt < o0, ¢ > 0.
1
(a). Show that all solutions of

y +p(t)y =0 (1)

are bounded on [1,00). (Hint: rewrite the equation in the form y" + cy = (¢ — p(t))y).
(b). What can you say about the stability of the zero solution?
(). Show that all solutions of (1) need not to be bounded if ¢ = 0. (Hint: p(t) = %).

3. Let A(t) be a continuous matrix for all ¢ € R. Let P(t) be the matrix solution of
X' =A(t)X.
Show that P(¢t)P~!(s) = P(t — s) for all ¢, s € R, if and only if A(f) is a constant matrix.

4. Consider the following scalar equation

and c¢(t) is 1— periodic.
(a). Prove that (2) does not have a nontrivial 1-periodic solution.
(b). Does the equation have a nontrivial solution with another period?



PRELIMINARY EXAM PROBLEMS
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1. Consider the differential equation
y +a(x)y=0, (1)

where ¢ : [o,8] — R is a continuous function such that 0 < m < g¢(z) < M. Let
{z1,x2,..., s} be the zeros of a solution y(x) such that o < 1 < x2,< ... < x, < .

Show that:
(a) #Sz7+1*x1§f7%71:17277n71)
(b) Y2(B—a)<n+l.

s

2. Applying the differentiable dependence of solutions on the initial value estimate the deviation
of a solution y(t) = y(x,0,y0) of the equation y = y + siny on [0, 1] if the initial value is
changed from 0 to yo and |yo| < 0.01.

3. (a) Find all values of a parameter a € R such that the system
¥ =2y—4dx+1, ¥y =22x—-y+a

has solutions bounded on R.
(b) Define all these bounded solutions.

(¢) Are these solutions stable?

4. For the initial value problem
y =X+ cosy,y(0) =0,

find an upper estimate for |y(z, A\1) — y(z, A2)| and deduce that y(z, \) is continuous.
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1. Consider the system
2’ = =3z - 2y + sin(t),
y = 2% - 3y + cos{t). (1)

(a) Evaluate the trausition matrix X(t,s) of the associated homogencous system. Show
that limsup,_,o, [X{t. s)[ = o4 O
(b) Tind the general solution z(t, to, xo} of the system;

(d
(o) Prove that the bounded solution is 2% —periodic function.

)

(¢} Show that all solutions arc bounded on [0, 00} functions;
) Show that therc oxists a unique solution bounded on K,
)

_ () Prove that cach solution of the systemn is uniformly agymptotically stabic.

T
2. E‘Vﬁ{&&m T2(t,0, 2g, 2, |2/ (t, 0, %o, zh)], for t € [0, T, T < oo, if z(t) = (1,0, 50 ). 2{0) =
wp, 7' (0) = 2}, 15 a solution of cquasion z' +sinz = 0. Consider zp = 0.01, 2} = -0.02,7 =
10. ‘

Hint: Use differentiability of solutions in initial value.

3, Assumc that w(t) > 0,0(t) > 0, arc continuous on [ty — T, %}, to € ,T > 0, functions. Prove
that the inequality

ip
w(t) < c+ / u{g)v(s)ds, t < 4y
A
implies
te )
'U.(t} < CC-L 1;(3)(1.5,
where ¢ 2 0 1s constant.
4. Consider the following Abel’s cquation
y =sin(t) ~ . @)

where £,y € R. Prove that as t increasing, cach solution of (2) is attracted into the strip
Iyl < 1+ ¢, where ¢ is a fixed positive number, in a uniformiy bounded time interval.
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Fall 2009

Ordinary Differential Equations

1. Consider the differential equation
y' = yg(t,y),

where g and g—g are defined and continuous for all (¢,7) € R?. Show that

(a) if y =y(t), t € (a,b), is a solution satisfying y(to) = yo > 0, to € (a,b), then y(t) > 0 for
all t € (a,b)

(b) if y =y(t), t € (a,b), is a solution satisfying y(to) = y1 <0, to € (a,b), then y(¢) < 0 for
all t € (a,b)

2. Consider the linear system

T = A(t)x,
where A is a continuous for all ¢t € J C R.

Let ®(¢,t9) be a matrix solution of the above system satisfying ®(¢g,to) = I.

(a) Show that z(t) = ®(t,t9)zo is the unique solution of the system satisfying x(ty) = xo.

)
(b) Show that (I)(t,to) = @(t,tl)q)(tl,to), ty € J.
(c) Show that % = —®(t,5)A(s), t,s € J.
(d) Let X(t) := ®(¢,0), 0 € J. Show that ®(¢,t9) = X (t — o) if and only if A is a constant

matrix.

3. Find the Folquet multipliers for the periodic system

1 1

0 cost+sint
2+4sint—cost

and deduce that there is a periodic s9olution? What is the periodic solution?

4. Show that the zero solution of

sint
P= 20— 3
T T+ 21 13:

is uniformly asymptotically stable.



Graduate Preliminary Examination

Ordinary Differential Equations
(3 hours)

September 20, 2010

. Let z(t,tg, mo) and z(t, fg, o) denote, respectively, solutions of
7' = f(t,z),  z(to) =m0
and
= flt2)+glt,z),  zlte) =%
where
(i) f € C(D), |f(t,2)] < M for some M > 0, f is Lipschitz in z with Lipschitz contant L;
{ii) g € C(D), lg(t,x)| < K for some K > 0.

(2} Show that
lz(t) — 2(t)| < (lﬂa‘a — Tg| + (M + K)|tg — fo] -+ %) GElt—tol __ %

(b) Use part (a) with g(t,z) = 0 to prove that the solution x(t) = z(t,1y,xo) is continuous in
(tg, o) for t in a compact subset of real numbers.

. Consider the systems

' = Az (1)

y' = Ay + f(t,y) (2)

where A is an n X n constant matrix and f(t,v) is a continuous function defined on B x R™.
Suppose that there exists a continuous function a(t) such that

1)l < @)l f‘”a(t)dt@o, (ac R).

Show that if all solutions of (1) are bounded, then so are all solutions of (2). What would you say
if A were not a constant matrix?

. Consider the equation

(mﬂ?’)’ —+ (1 -+ sin t)(L’ == )

(a) Show that every solution of the equation has at least one zero in [0, 7].

(b) Show that there is a solution having at least two zeros in [0, 7). Is it possible for any solution
to have more than two zeros on {0, #]7.

. Let
0 —a
A= [ 0 e } .
{a) Find the fundamental matrix e of of the finear system
' = Ax.

(b} Use part (a) to show that all solutions are periodic. What is the common period of the
solutions?

(c)} Show that the zero solution is stable. Is it asymptotically stable?



PRELIMINARY EXAM PROBLEMS
Differential Equations (ODE), 2012/1

(1) Consider the differential equation z” + w?x = h(t), where h(#) is continuous on (1,13}, is a
non-zero real constant. Show that the general solution is given by
i 1t
z(t) = Acoswt + Bsinwt + ~ f sinw(t — s)h{s)ds,
W to
where 4 and B3 are real constants and #g € {f1,%2) is & fixed real nuumnber. Use the preceding
formula to find an integral equation that is equivalent to the nonlinear differential equation
2 wiz = ft ).

{(2) Consider the linear differential equation
x = (" Ay + LAy L+ A,

where A, ¢ == 0,1,...,m, are constant n by n matrices, & € R". Assume that the eigenvalues
of Ag have negative real parts. Prove that the solution x = 0 is asymptotically stable.

Hint: Introduce a new independent variable s = (m + 1)~ 1™+
(3) Consider the IVP
zh = (~1 +sint)ug + T:Tl&—j + 5t
2% = 2wy + (24 cost) ] j: 2 -t

z1(0) =1, 22(0)=0.

{a) Show that the IVP has a unique solution z = z(t) defined on an interval (~¢,¢) for
some ¢ > 0

(b) Show that
2 i< 5 @ 46t &2 0.
Recall that [ v 1= [y + lya!-

(¢) Use part (b) and the fact that DV || z 1|} 27 |1 to show that the solution is defined
for all ¢ = 0. Here D%z is the upper Dini derivative of z.

(d) What can you say if ¢ < 07

(4) Let a be a continuous function satistying a(t + 27) = o(t) for all t € R. Consider
&' = a(t)z.

Note that z(t) = eJo W) jg g solution.
(a) Verify the e Floquet theorem.
(b) Calculate the Floguet exponent and the Floguet multiplier. Is there a periodic solution?
(¢) Find the related constant coefficient equation.

{d) Answer (h) and (c) in the special case a(t) = sint.



PRELIMINARY EXAM PROBLEMS
Differential Equations (ODE), 3 hours, 2013/2

1. Consider differential equations:
(i) 2’ = z*, with initial condition z(0) = zo > 0,
(i) =’ = z® + 1, with initial condition z{0) = zo.

a) Verify that the theorem on existence and unigueness applies.
b) Solve for an explicit solution.
¢) What is the maximal interval of the solution?

2. Find a bounded on R solution, z°(t}, of the equation #’ = —« + sint. Prove that

(a) z(t) is a unique bounded solution of the equation;

(b} the bounded solution is 27 periodic;

(c) sthe bounded solution is uniformly asymptotically stable.

3. Let Alt) be a continuous matrix for all ¢ € R. Let P{i) be the matrii solution of
X' = A(t)X.
Show that P(t)P~1(s) = P(t — s) for all ¢, s € R, if and only if A{f) is a constant matrix.

4. Consider the following scalar equation

z' = cosz. ‘ (1)

(a) Find all equilibriums of the eguation.
(B Tavestigate stability of the solutions by linearization.
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Q.1 Consider the linear ODE: ' = a(¢)z + b{t), where a(t) and b(t) are continuous
real fanctions on t > 0. Prove the following statements:

{a) The solution, satisfying z{tg) = zo € R for any ¢ 2 0, is given by

t 1
E{t) - 33{}6"110 e{s)ds o+ / b{u)efu a(s}dsdu
ig

(b) If a(t) € ~m < 0 and b(t) is bounded on ¢ > 0, then any solution is bounded
ont >0

(¢) If a(t) > m > 0 and b(t} is bounded on ¢ 2 0, then there exists one and only
one solution bounded on ¢ > 0, which is given by

z(t) = ~ / blu)e™ I aledds g,
i

(d) If lim a(t) = —A with A > 0 and lim b(¢) = B as ¢ — oo, then any solution of
the Hnear ODFE satisfies im z(t) = B/A4 as t — co.

(.2 Let A(t) be an n x n continuous matrix for all ¢ € R. Let T (t) be a matrix
solution of X/ = A{#)X with ¥(0) = I,. Show that ®(t)T " (s) = L(t - s) for all
¢, s € R, if and only if A() is a constant matrix.

Q.3 Consider the nonlinear system

dr/dt = y
dy/dt = —wtsinz — Yy

where v and w are real constants.

(a) Find the critical points (equilibrium solutions), and deduce that the origin is an
isolated critical point of the system.

{(b) Using the linear approximation, exwamine the stabiiity properties of the crit-
ical point at the origin.

(c) Explain why the trajectories of the linear system are good approximations to

those of the nonlinear system, at least near the origin.
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Q.1 Use Sturm Comparison Theory to find the least possible number of zeros of a
nontrivial solution of y” + t*y = 0 on (0,5%). At most, how many zeros can have
such a solution on [0, 57]?

Q.2 Use Green's formula to find the differential operator adjoint to

d?

d
=P +ay(t) + ao(t),

L
dt

where ag and a; are real valued continuous functions on ¢ € la,bl. Hence show that
L is NOT formally self-adjoint. Then determine a function u(t) appropriately to see

that the operator p(t)L is formally setf-adjoint.

Q.3 Let ®(t) and ¥{t) be two fundamental matrices for the linear homogeneous
system x' = A(t)x, where A(t) is an n x n continuous real matrix on t € (a,b).
(a) Show that there is an invertible constant matrix C such that ®~1(t)¥(t) = C.
(b) If W(t) is a fundamental matrix for the adjoint system y' = ~AT(t)y, show
also that WT(¢)@{t) = C. -

Q.4 Consider the nonlinear system

de/dt = 2y
dy/dt = -—4dcos{z+=/2}+y

{(a) Find the critical points {equilibrium solutions}, and deduce that the origin is an
isolated critical point of the system.

(b) Using the linear approximation, examine the stability properties of the crit-
ical point at the origin.

{c) Explain why the trajectories of the linear system are good approximations to
those of the nonlinear system, at least near the origin.
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1. Determine stable and unstable subspaces of solutions of
the system

z' = Az,
where
-3 0 0
A= 0 3 ~2
0 1 1

2. Consider the initial value problem,
o' = g3 z(ty) = zo.

Prove that there are infinitely many solutions for any couple
(to,z0).to € R, 20 2 0.

3. Analyze stability of all equilibriums of the pendulum equa-
tion

' +ksinx =0,
where k > 0 is a constant.

4. Investigate for orbital stability the solution £ = sint of
the scalar equation

!+ pr (2t 2? - 1)+ =0,

where (1 is a scalar parameter.



TMS. Differential Equations (ODE)

1. Draw integral curves (the phase portrait) of the scalar equation

dy _z—y
dr |z —y|
2. Consider the Riccati equation
dy 2

where f(x) is an w—periodic function. Prove that

1f@m@+ymex:a

where y1,ys are two w—periodic solutions of the equation (2).

3. Analyze Lyapunov stability of the following initial value problem,

de— oy a(1) =0,

where a is a real parameter.

4. Solve the equation
d?y
2
— =2y =0

with boundary conditions a) y(1) = 1, limy 00 ¥'(2) = 0,b) lim, o y(x) =0, /(1) = 1.



PRELIMINARY EXAM PROBLEMS
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1. Supppose that @, (¢) and x3(2) ave the solutions of &’ + ¢{t)x = 0 with 21(t1) = a, z2(t2} = b,
where a, b are constants and ¢1, £, t are members of an interval 7 < R, and ¢(#) is a continuous

function. Solve the equation and show that 21(t) — ze(t) — 0 as £, — &9 and @ — b for all
tel

2. Consider the IVP
g =t b2t 2(0) =005t S e,z <

Show that

(1) the solution exists on 0 < ¢ < min(a, Eg-f;p);

(i7) the maximum value of 737 is 1/(2e) for a fixed a;

(#3) h = min(e, 1/{2a)) is largest when a = 1/v/%;

(iv) discuss the maximum interval of existence on the basis of (¢Z) and (i#).

3. Solve the BVP,
Y +y=0,30) = 0,y(e) = vo. (1)
4, Consider the following scalar equation
z' = a(t)m, (2)

where a(t) : R = R is a continuous function. Prove that the zero solution, x = 0, of the
equation is uniformly stable if and only if

¢
[ a(s)ds < M < co,t >ty > 0,

to

with A constant.




