




PRELIMINARY EXAM PROBLEMS
Differential Equations (PDE), 2004/2

1. Solve the Cauchy problem
uy = u3

x, u(x, 0) = 2x3/2.

2. (a) Verify, formally, that the PDE of the form{ ∂

∂x

[
F (x, y)

∂

∂x

]
+

∂

∂y

[
G(x, y)

∂

∂y

]}
Φ(x, y) = 0

has a solution of the type Φ(x, y) = X(x)Y (y), if F (x, y) and G(x, y) are ”separable” in the
variables, i.e. F (x, y) = p(x)f(y), G(x, y) = q(x)w(y). Then write down the system of two
ODE’s for X(x) and Y (y).
(b) If Φ(0, y) = Φ(1, y) = 0 for all y, verify that the x−dependence of the problem in Part
(a) is equivalent to the system

d

dx

[
p(x)

dX

dx

]
+ λq(x)X = 0, X(0) = X(1) = 0,

where p(x) and q(x) are real and positive with continuous derivatives in the interval [0, 1]
and λ is constant.

3. Use Duhamel’s principle to solve the IVP

utt − ux1x1 − ux2x2 − ux3x3 = x1 + x2 + t,

u(x1, x2, x3, 0) = ut(x1, x2, x3, 0) = 0.

4. Let u be a solution of IVP

ut − kuxx = 0, x ∈ R, t > 0,
u(x, 0) = f(x).

where f(x) is continuous on R. Assume that u(x, t) tends to zero uniformly for t > 0 as
x→ ±∞. Show that |u(x, t)| ≤M,x ∈ R, t > 0, if |f(x)| ≤M,x ∈ R.



PRELIMINARY EXAM PROBLEMS
Differential Equations (PDE), 2005/2, 3 hours

1. Solve the Dirichlet problem

uxx + uyy = 0, x2 + y2 < 1,

u = y4, x2 + y2 = 1.

2. (a). Find, for all positive and negative values of a constant λ, the real solutions of the
equation

∂2z

∂x2
= c2 ∂z

∂t

that are of the form z = eλtφ(x).

(b). If c is not an integer multiple of π, show that there exists a solution of this equation
which remains finite as t →∞, which is zero when x = 0, and which assumes the value e−t

when x = 1. Find this solution.

3. (a). Let u(x, t) be a solution of the equation

ut − kuxx = F (x, t), k > 0, (1)

for {(x, t) | 0 < x < L, t > 0}, where L is a fixed positive number, and u(x, t) is continuous
in {(x, t) | 0 ≤ x ≤ L, t ≥ 0}. Prove that the maximum of u(x, t) is attained at t = 0, or
x = 0, or x = L, if F (x, t) is negative valued in {(x, t) | 0 < x < L, t > 0}.
(b). Construct a counter example if F (x, t) in (1) is positive in the region.

4. The function −1
2π K0(αr) is a fundamental solution for the equation

∇2u− α2u = 0 in Ω,

where α is a constant, Ω ⊂ R2 and K0(αr) is the zero order modified Bessel function of the
second kind, r is the distance from a fixed point (ξ, η) to any point (x, y) in Ω.

Prove that the Green’s function for the equation above defined by

∇2G− α2G = δ(x− ξ)δ(y − η) in Ω,

G = 0 on ∂Ω,

is unique, where δ and ∇2 denote the Dirac Delta and Laplace operators respectively.



PRELIMINARY EXAM PROBLEMS
Differential Equations (PDE), 3 hours, 13.09.2006

1. Let Ω denote the unbounded set |x| > 1. Function u ∈ C2(Ω̄) satisfies ∆u = 0 in Ω and
limx→∞ u(x) = 0. Show that

max
Ω̄

|u| = max
∂Ω

|u|.

Hint: Apply the maximum principle to a spherical shell.

2. (a). Solve the following problem

xux + yuy = u + 1, u|Γ = x2

if Γ = {(x, y) : y = x2}.
(b). Use d’Alembert’s formula to determine u(1, 2) if

utt − 4uxx = 0, 0 < x < 2, t > 0,

u(x, 0) =
√

x, ut(x, 0) = 2− x, 0 ≤ x ≤ 2,

u(0, t) = 0, ut(2, t) = 0.

3. Solve the following problem by Fourier’s method.

utt = uxx + 2a, 0 < x < l, a− constant,

u(0, t) = 0, u(l, t) = 0, u(x, 0) = 0, ut(x, 0) = 0.

4. Consider the following initial value problem

ut − uxx = 0, 0 < x < 1, t > 0,

u(x, 0) = x, 0 ≤ x ≤ 1,

u(0, t) = sin t, u(1, t) = cos t, t ≥ 0.

Using the maximum principle, show that:

(a) u(x, t) ≤ 1 for t ∈ [0, T ] for every T > 0;

(b) the problem has at most one solution.
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1. Solve the following initial value problem.

ux
2 − 3uy

2 = u, u(x, 0) = x2.

2. Let D be the region (0, 1)× (0, 1) ⊂ R2 and let u(x, y) ∈ C2(D)∩C0(D) be a
non-constant function. Set M = max(u) in D.

a) Show that if u(x, y) solves the equation

∇2u(x, y) + a(x, y)ux + b(x, y)uy = F (x, y) in D

and if F (x, y) > 0 in D, then u(x, y) < M for all (x, y) ∈ D.

b) True or false ? The same conclusion holds if u(x, y) solves the equation
uxy = 0 in D. (Prove the statement or give a counter example).

3. Consider the following Dirichlet problem.

∇2u = 0 in Ω = {(r, θ) : r > 1, 0 < θ < π/2}

u(r, 0) = u(r, π/2) = 0 for r ≥ 1

u(1, θ) = sin(2θ) for 0 < θ < π/2.

a) Find the bounded solution of this problem.

b) Find an unbounded solution, if there is any.

c) Write a Neumann problem in Ω for which the function u(r, θ) of part (a) is
a solution.



4. Let G(x, t) be the heat kernel G(x, t) =
1√
4πt

e−
x2

4t .

a) Show that u(x, t) = 2

∫ t

0

G(x, t− t′)f(t′)dt′ satisfies

∂2u

∂x2
=

∂u

∂t
in {(x, t) : x > 0, t > 0}

u(x, 0) = 0, x > 0.

Hint : Do not verify the uniform convergence of the integral, but indicate
when you use this property.

b) Verify that −∂u

∂x
|x=0 = f(t), t > 0.

Hint : In the integral, first make the change of variable given by s2 =
x2

4(t− t′)
.
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1. Determine if the following Cauchy problem has a solution in the neigh-
bourhood of the point (1,0)

yzx − xzy = 0,

a) z = 2y and x = 1

b) z = 2y and x = 1 + y.

2. Let Ω = {x ∈ R3 : |x| > 1}. Let u ∈ C2(Ω̄) and suppose that u
satisfies the Laplace equation in Ω

∆u(x) = 0, for all x ∈ Ω.

Show that
max

Ω̄
|u| = max

∂Ω
|u|

if lim
x→∞

u(x) = 0.

3. For the wave equation in R3

utt = uxx + uyy + uzz

find a general form of the plane wave solution. That is, a solution of
the form u(t, x, y, z) = v(t, s) where s = αx+βy +γz and α, β, γ ∈ R,
α2 + β2 + γ2 = 1.

4. Consider the P.D.E.

∂2z

∂x∂y
+

∂z

∂y
= xe−y. (∗)
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a) Determine the type of this PDE and find the characteristic curves.

b) Consider the given PDE as a first order PDE for q =
∂z

∂y
.

Solve this first order PDE for q. Then find the general solution of (*).

c) Find two different solutions z(x, y) which satisfy the condition

z(x, x) = 1 for x ∈ R.

d) True or false ? Explain.

There exists a solution z(x, y) such that z(x, x) = 1,
∂z

∂n
= 0 where n

is the unit normal vector to the line y = x in R2.
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NOTATION :
∇, ∆ denote the gradient and the Laplace operators, respectively.

1. a. For a linear second order differential equation

auxx + 2buxy + cuyy + dux + euy + fu = 0

define the elliptic, parabolic and hyperbolic equation at point (x, y).

Consider the equation uyy − yuxx = 0.

b. Determine where the equation is elliptic, parabolic, hyperbolic.

c) Determine the characteristics in the region H = {(x, y) : y > 0}.

2. a. Give the definition of Dirichlet and Neumann problems for Laplace
equation in domain Ω.

b. Using the energy identity∫
Ω

(∑
u2

xi

)
dx +

∫
Ω

u∆udx =

∫
∂Ω

u
du

dn
dS.

prove that if u ∈ C2(Ω̄) is a solution of a Dirichlet problem in Ω, then
it is unique.

c.) Explain if there exists a solution for each of the following problems
in the unit disk Ω = {(r, θ) : r < 1} ∈R2.

• ∆(u) = 0, u|∂Ω = cos(θ).
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• ∆(u) = 0,
∂u

∂n
|∂Ω = cos(θ).

(Hint : For f, g ∈ C2(Ω) one has the Stokes’ formula∫
Ω

(∇f.∇g)dA +

∫
Ω

(f∆g)dA =

∫
∂Ω

(f
∂g

∂n
)dl.)

3. For the equation
∆u(x) + u(x) = 0 x ∈ R3

find the spherically symmetric solution. That is a solution of the form
u = f(r), where r =

√
x2

1 + x2
2 + x2

3.

(Hint: in the resulting ODE for f introduce new variable y(r) = rf(r)).

4. For T ≥ 0 let QT = {(x, t) : 0 < x < L, 0 < t ≤ T} and BT = Q̄T\QT

(Q̄T denotes the closure of QT ). Suppose that u(x, t) is continuous on
Q̄T and satisfies

ut − a(x, t)uxx − b(x, t)ux − c(x, t)u < 0 on QT ,

where a(x, t) ≥ 0, c(x, t) ≤ 0 in QT , and

u(x, t) ≤ 0 on BT .

Show that u(x, t) ≤ 0 on Q̄T .

(Hint: show that u(x, t) cannot have positive local maximum in QT .)
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1. Consider the following problem

y
∂u

∂x
− x

∂u

∂y
= xy

u(1, y) = ey.

a) Find the solution.

b) Discuss the existence and uniqueness of the solution in a neighbour-
hood of (1, y0) as y0 varies.

2. Consider the following problem.

∂2u

∂x2
=

∂u

∂t
in Ω = {(x, t) : 2 > x > 0, t > 0}

u(0, t) = u(2, t) = 0, u(x, 0) = 1− |x− 1| for 2 ≥ x ≥ 0.

a) Solve this problem by the method of separation of variables.

(Write the integral expressions for the coefficients, but do not compute
the integrals).

b) Using the heat kernel, write the integral form of the solution of the
problem

∂2u

∂x2
=

∂u

∂t
in Ω = {(x, t) : x ∈ R, t > 0}

u(x, 0) =

{
1− |x− 1| if 2 ≥ x ≥ 0

0 otherwise.

Show that |u(x, t)| ≤ 1 in R× (0,∞).
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c) Can you obtain the solution in (a) by restricting the solution in (b)
to Ω = {(x, t) : 2 > x > 0, t > 0} ?

3. Consider the following Monge-Ampere equation in two variables

∂2u

∂x2

∂2u

∂y2
− (

∂2u

∂y∂x
)2 = 1.

a) Determine the general solution u(x, y) which satisfies

∂2u

∂x2
= 1 =

∂2u

∂y2
.

b) Find two distinct solutions of the BVP : u(x, y)|x2+y2=1 = 1.

(Hint : Replace 1 by -1 in (a) and find the corresponding general solu-
tion).

c) Verify that the mean value property

u(x0, y0) =
1

2πr

∫
S1

u(x, y)ds

(where S1 is the circle (x− x0)
2 + (y − y0)

2 = r2)

and the maximum principle do not hold for the solutions of the given
equation.

4. Let Ω ⊂ R2 be an open connected and bounded region, Ω be the closure
of Ω and ∂Ω be the boundary. Let f(x, y) ∈ C2(Ω) be a subharmonic
function, that is f satisfies the inequality ∇2f ≥ 0 in Ω. Equivalently,
for any p ∈ Ω and any disc D(p; r) ⊂ Ω one has

f(p) ≤ 1

2πr

∫
∂D(p;r)

fds.

a) Show that if f(p) = maxΩ(f) for some p ∈ Ω, then f is constant.

b) Show that if u(x, y) is harmonic in Ω then f(x, y) = |∇u(x, y)|2 is
subharmonic.

c) Find a nonconstant subharmonic function f in D(0; 1) such that
maxD(f) = 1.

(Hint : You may use (b)).
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Problem 1.
Solve the problem

ux + uy = x u(x, 0) = h(x).

Problem 2.
For the wave equation in R3

utt = uxx + uyy + uzz

find a general form of the plane wave solution. That is solution of the form
u(t, x, y, z) = v(t, s) where s = αx+βy+γz and α, β, γ ∈ R, α2+β2+γ2 = 1.
Problem 3.
Let Ω = {x ∈ R3 : |x| > 1}. Let u ∈ C2(Ω̄) and u satisfies the Laplace
equation in Ω, ∆u = 0 x ∈ Ω. Show that

max
Ω̄
|u| = max

∂Ω
|u|

if lim
x→∞

u(x) = 0.

Problem 4.
Show that the problem

ut = −uxx t > 0, −∞ < x <∞
u(x, 0) = f(x)

is not well posed. Hint: Consider solutions of the equation

ut = −uxx t > 0, −∞ < x <∞

u1(x, t) = 1, and u2(x, t) = 1 + 1
n
en2t sin(nx), n = 1, 2, 3, . . . .

1







TMS. Differential Equations (PDE)

1. (a) Find the general solution of the equation

xz
∂z

∂x
+ yz

∂z

∂y
= −xy (1)

(b) Determine the solution of (1) passing through the curve y = x2, z = x3.

2. Reduce the equation yuxx + xuyy = 0 to the canonical forms in the plane.

3. Suppose u(x, t) is the solution to

ut − uxx = x, 0 < x < 1, t > 0
u(0, t) = 0, u(1, t) = 0 t ≥ 0
u(x, 0) = 0 0 ≤ x ≤ 1.

Apply the maximum principle to show that u(x, t) ≤ x− x3

6
for 0 < x < 1 and t > 0.

4. Find a harmonic function u(r, θ) in the annulus 2 < r < 4 with u(2, θ) = 1 and u(4, θ) =
sin2 2θ.



Partial Differential Equations

Problem 1. Find solution of the equation

xyzx + xzzy = yz

passing through the curve z = 1 + y2, x = 1 (if exists).

Problem 2. Using Green’s first identity

∫∫

∂D

v
∂u

∂n
dS =

∫∫∫

D

∇v · ∇u dx+

∫∫∫

D

v∆u dx,

prove the uniqueness of solution for the Robin problem

∆u = 0 in D,
∂

∂n
u(x) + a(x)u(x) = h(x) on ∂D,

provided a(x) > 0 on ∂D.

Problem 3. Solve the Dirichlet problem for the exterior of a circle

∆u = 0, x2 + y2 > a2

u = h, x2 + y2 = a2

and u bounded as x2 + y2 → ∞, given that h(a, θ) =
∞∑
n=1

αn cos 2nθ (in polar

coordinates (r, θ)).

Problem 4. Let Ω = {(x, t) : x ∈ (0, a), t ∈ (0, T ]} and
∂pΩ = {(x, t) : x = 0, t ∈ [0, T ] or x = a, t ∈ [0, T ] or x ∈ [0, a], t = 0}.
Suppose u ∈ C2(Ω) ∪ C(Ω̄) satisfies ut − uxx + cu < 0, where c ≥ 0, in Ω.
Show that max

Ω̄

u = max
∂pΩ

u given that max
∂pΩ

u > 0.
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