Graduate Preliminary Examination Real Analysis Duration: 3 hours

Let (X, M, μ) be a measure space and f ∈ L₁(μ) with f(x) > 0 a.e.
 Prove that if A is a measurable set such that ∫_A fdμ = 0, then μ(A) = 0,

 Let (X, M, μ) be a measure space and (a, b) be a finite, non-empty interval in ℝ. Let f : X × (a, b) → ℝ satisfy

a) $F(t) = \int f(x, t) dx$ is defined $\forall t \in (a, b)$

b) $\frac{\partial f}{\partial t}$ is defined everywhere in $X \times (a, b)$

c) There is an integrable $g: X \to [0, \infty)$ such that $|\frac{\partial f}{\partial t}(x, t)| \le g(x)$ $\forall x \in X, t \in (a, b).$

Prove that both F'(t) and $\int \frac{\partial f}{\partial t}(x,t)dx$ exist $\forall t \in (a,b)$ and are equal.

Let 0 a) L^p ∉ L^q ⇔ X contains sets of arbitrarily small positive measure,
 but

b) $\ell_p \subsetneqq \ell_q$.

4.

a) State the Lebesgue-Radon-Nikodym Theorem for signed measures.

b) For j = 1, 2 let μ_j, ν_j be σ -finite measures on (X, M_j) s.t. $\nu_j << \mu_j$ (ν_j is absolutely continuous with respect to μ_j). Prove that

 $\nu_1 \times \nu_2 << \mu_1 \times \mu_2 \text{ and } \frac{d(\nu_1 \times \nu_2)}{d(\mu_1 \times \mu_2)}(x_1, x_2) = \frac{d\nu_1}{d\mu_1}(x_1) \cdot \frac{\partial\nu_2}{\partial\mu_2}(x_2).$

METU - Department of Mathematics Graduate Preliminary Exam

Real Analysis

February, 2009

.

Duration: 180 min.

1. Characterize metric spaces X for which the open sets form a σ -algebra.

2. a) Show that if $f : \mathbb{R} \to \mathbb{R}$ is continuous almost everywhere then f is a Lebesgue measurable function.

b) Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function. Show that the derivative f' of f is a Lebesgue measurable function.

3. Construct an example of a subset $D \subseteq \mathbb{R}^2$ satisfying the following properties:

(i) the Lebesgue measure of $D \cap U$ is zero for every open set $U \subseteq \mathbb{R}^2$;

(ii) the set $D \cap U$ is of the second category for every nonempty open set $U \subseteq \mathbb{R}^2$;

(iii) for every point $(x_0, y_0) \in D$ the line $y = y_0 + x_0 - x$ is a subset of D.

4. a) State the Radon - Nikodym theorem for the interval [0, 1] with the Lebesgue measure.

b) State the Hahn decomposition theorem.

c) Derive the Hahn decomposition theorem for the interval [0, 1] from the Radon - Nikodym theorem and the Jordan decomposition theorem.

M.E.T.U

Department of Mathematics Preliminary Exam - Feb. 2011

REAL ANALYSIS

1. a) Let $\{f_n\}$ be a sequence of measurable functions on a measure space (X, S, μ) such that $\{f_n(x)\}$ is a bounded sequence for each $x \in X$. Show that the set

$$E = \{x \in X : \lim f_n(x) exists\}$$

is a measurable set.

b) Let (X, S, μ) be a measure space. Assume that $f : X \to \mathbb{R}$ is a measurable function and $g : \mathbb{R} \to \mathbb{R}$ is a continuous function. Show that the composition function gof is a measurable function.

2. a) Let (X, \sum, μ) , (Y, Λ, ν) be measure spaces and \mathcal{A} be algebra of subsets of $X \times Y$ generated by rectangles $A \times B$, $A \in \sum, B \in \Lambda$. By using of the Monotone Convergence Theorem show that the following function

$$\mu \times \nu : \mathcal{A} \to \overline{\mathbb{R}}_+$$
 defined by $\mu \times \nu(A \times B) := \mu(A) \cdot \nu(B)$

is a pre-measure.

b) Let $A = ((a_{ij}))_{ij \in \mathbb{N}}$ be an infinite matrix of real numbers. Suppose $\lim_{i \to \infty} a_{ij} = a_j \in \mathbb{R}$ and $\sup_i |a_{ij}| = b_j$ with $\sum_{j=1}^{\infty} b_j < \infty$. By application of the Dominated Convergence Theorem show that $\lim_{i \to \infty} \sum_{j=1}^{\infty} |a_{ij} - a_j| = 0$

3. a) Formulate Fubini's theorem.

b) Show that if
$$f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$
, with $f(0,0) = 0$, then
$$\int_0^1 [\int_0^1 f(x,y)dx]dy = -\frac{\pi}{4}, \quad \int_0^1 [\int_0^1 f(x,y)dy]dx = \frac{\pi}{4}$$

c) Can f above be integrable on $[0,1] \times [0,1]$? Explain.

4. Let $a \in \mathbb{R}$ and $K = \{f \in C^2[0 \ 1] : f(0) = f(1) = 0, f'(0) = a\}$. Find $\min_{f \in k} \int_0^1 (f''(x))^2 dx$ and a function $f \in K$ on which the minimum is attained. [Hint: apply Cauchy-Schwartz inequality to functions $\varphi(x) = f''(x), \psi(x) = 1 - x$]

METU MATHEMATICS DEPARTMENT REAL ANALYSIS

FEBRUARY 2013 - TMS EXAM

Signature:

Last Name:

Name:

1.) Let (X, S, μ) be a measure space, T be a metric space. Let $f : X \times T \to \mathbb{R}$ be a function. Assume that $f(\cdot, t)$ is measurable for each $t \in T$ and $f(x, \cdot)$ is continuous for each $x \in X$. Prove that if there exists an integrable function g such that for each $t \in T$, $|f(t, x)| \leq g(x)$ for $a \cdot a \cdot x$, then $F : T \to \mathbb{R}$, $F(t) = \int f(x, t) d\mu(x)$ is continuous.

2.) Let $f : \mathbb{R} \to \mathbb{R}$ be measurable and positive. Consider the set of all points in the upper half-plane being below the graph of $f : A_f = \{(x, y) \in \mathbb{R}^2 : 0 \le y < f(x)\}$

Show that A_f is $\lambda \times \lambda$ - measurable and $(\lambda \times \lambda)(A) = \int f(x) dx$.

3.) For a function $f \in L_1(\mu) \cap L_2(\mu)$ establish the following properties:

- a) $f \in L_p(\mu)$ for each $1 \le p \le 2$; and
- b) $\lim_{p \to 1^+} \| f \|_p = \| f \|_1$

4.) If $\{f_n\}$ is a norm bounded sequence of $L_2(\mu)$ then show that $\frac{f_n}{n} \to 0$ a.e. holds.

METU MATHEMATICS DEPARTMENT REAL ANALYSIS FEBRUARY 2014 - TMS EXAM

1.

a) State and prove Fatou's Lemma.

b) Show that Fatou's Lemma may not be true, even in the presence of uniform convergence.

(Hint: You may find
$$f_n(x) = -\frac{1}{n}\chi_{[0,n]}$$
 on \mathbb{R} useful).

2. Let *E* be a measurable set of finite measure; (f_n) be a sequence of measurable real valued fuction on *E*. Show that for given $\epsilon > 0$ and $\delta > 0 \exists$ measurable *A* in *E* with measure $m(A) < \delta$ and a natural number *N* such that $\forall x \notin A$ and all $n \geq N$, $|f_n(x) - f(x)| < \epsilon$.

3.

a) Let (X, \wedge, μ) be a finite measure space. Let $(f_n), (g_n)$ be two sequences of measurable functions and $f_n \to f$ in measure μ and $g_n \to g$ in measure μ . Show that $f_n g_n \to fg$ in measure.

b) By considering $f_n(X) = \sqrt{x^4 + \frac{x}{n}}$ and $f(x) = x^2$ on $(0, \infty)$ with Lebesgue measure, show that the conclusion may fail if the space has no finite measure.

4. Let $f : \mathbb{R} \to \mathbb{R}$ be a Lebesgue integrable function. Show that $\lim_{t \to \infty} \int f(x) \cos(xt) d\lambda(x) = 0 \quad \text{when} \quad \lambda \quad \text{is the Lebesgue measure.}$

1

- 1) Let (X, M, μ) be a measure space, $g : X \to : [0, \infty]$ be a non-negative μ measurable function. For each $E \in M$ define $\nu(E) = \int g\chi_E d\mu$.
 - a) Show that ν is a measure on (X, M).
 - b) Show that if f is any non-negative μ measurable function then $\int f d\nu = \int f g d\mu$.
- 2) Let (X, M, μ) be a finite measure space, E_k be a sequence of sets in μ such that μ(E_k) > 1/100 ∀k. Let F be the set of points x ∈ X which belong to infinitely many of these sets, E_k.
 - a) Show that $E \in M$.
 - b) Show that $\mu(E) \ge 1/100$
 - c) Show that conclusion (b) may fail if $\mu(X) = \infty$.
- 3) a) State the Dominated Convergence Theorem.

b) Let μ be a measure on the Borel subsets of \mathbb{R} , and $f \in L^1(\mu)$. Prove that the function $F(x) = \int_{(-\infty,x]} f d\mu$ is continuous from the left. c) Show that if $x \in \mathbb{R}$ and $\mu(x) = 0$ then F is continuous from the right at x.

4) Let μ, ν be finite measures on (X, M) and $\nu = \nu_1 + \nu_2$ be the Jordan decomposition of ν so that $\nu_1 \perp \mu$ and $\nu_2 \ll \mu$. Let $\lambda = \nu + \mu$.

a) Show that if A,B is a Hahn Decomposition for ν_1, μ then it is also a Hahn Decomposition for ν_1, ν_2 .

b) Show that $\nu \ll \lambda$

c) Let $f = \frac{d\nu}{d\lambda}$. Show that $0 \le f \le 1$ $\lambda - a.e.$ and the two sets $f^{-1}(\{1\}), f^{-1}([0,1))$ form a Hahn Decomposition for ν_1, μ .

- 5) Let $f : \mathbb{R} \to \mathbb{R}$ be such that $\int_{-\infty}^{\infty} f dx$ converges in the usual Riemann sense, let m denote the Lebesgue measure on \mathbb{R} .
 - a) Show that if $f(x) \ge 0$ m-a.e then $f \in L^1(m)$.

b) Give an example showing that the non-negativity assumption in part (a) is necessary.

Feb. 2016

1) Let (X, \sum, μ) be a measure space and let $f : X \to [0, \infty]$ be measurable. For $E \in \sum$ define $\nu(E) = \int_E f d\mu$ Show that ν is a measure (You will need a convergence theorem for countable additivity)

2) Let
$$f_n(x) = \frac{n^{3/2}x}{1+n^2x^2}$$
 Show that $\lim_{n \to \infty} \int_0^1 f_n(x) dx = 0$

3) Let (f_n) be a sequence of integrable functions such that $f_n \to f$ a.e. with f integrable. Then prove that $\int |f_n - f| \to 0 \Leftrightarrow \int |f_n| \to \int |f|$.

4) Let h and g be integrable functions on (X, μ) and (Y, ν) , and define f(x,y) = h(x)g(y) Then show that f is integrable on $X \times Y$ and

$$\int_{X \times Y} f d(\mu \times \nu) = \int_X h d\mu \int_Y g d\nu$$

Hint: Take $h = X_A$, $g = X_B$ where $A \subset X, B \subset Y$ are measurable sets.

Preliminary Exam - February, 2017 Real Analysis

- 1) Let (X, \mathcal{M}, μ) be a measure space. Define $\mu^* : \mathcal{P}(X) \to [0, \infty]$ by $\mu^*(A) = \inf\{\mu(E) : E \in \mathcal{M}, A \subset E\}$. Prove that
 - a) μ^* is an outer measure on X.
 - b) $\forall A \in \mathcal{P}(X) \exists E \in \mathcal{M} \text{ such that } A \subset E \text{ and } \mu^*(A) = \mu(E).$
- 2) Suppose that {f_n} is a sequence of Lebesgue measurable functions on [0, 1] such that lim ∫₀¹ |f_n|dm = 0 and there is an integrable function g on [0, 1] such that |f_n|² ≤ g, for each n.
 a) Prove that lim ∫₀¹ |f_n|²dm = 0
 - b) Prove that if $\lim_n f_n = f$ exists a.e. then f integrable on [0, 1] and $\int f dm = 0$
- 3) If f is a complex valued measurable function on (X, \mathcal{M}, μ) , define

$$R_f = \{ z : \mu(\{ x : |f(x) - z| < \epsilon \}) > 0 \ \forall \epsilon > 0 \}$$

Show that

- a) R_f is closed. b) If $f \in L^{\infty}$ then R_f is compact.
- 4) Let (X, \mathcal{M}, μ) be an arbitrary measure space and define ν on \mathcal{M} by $\nu(A) = 0$ if $\mu(A) = 0$; and $\nu(A) = \infty$ if $\mu(A) > 0$.
 - a) Show that ν is a measure on X and $\nu \ll \mu$. b) Find $\frac{d\nu}{d\mu}$.

GRADUATE PRELIMINARY EXAMINATION ANALYSIS I (REAL ANALYSIS) Fall 2005 September 12th, 2005

Duration: 3 hours

- **1.** Let (X, S, μ) be a measure space, T be a metric space. Let $f : X \times T \to \mathbf{R}$ be a function. Assume that $f(\cdot, t)$ is measurable for each $t \in T$ and $f(x, \cdot)$ is continuous for each $x \in X$. Prove that if there exists an integrable function g such that for each $t \in T$, $|f(x,t)| \leq g(x)$ for a.a.x, then $F : T \to \mathbf{R}$, $F(t) = \int f(x,t)d\mu(x)$ is continuous.
- **2.** Let \mathcal{G} be a set of half-open intervals in **R**. Prove that $\bigcup_{G \in \mathcal{G}} G$ is Lebesgue measurable.
- **3.** a) Let $f_n = \sin n^2 x \in L_p[0, 1]$, where $1 \le p < \infty$. Show that $f_n \to 0$ weakly, but $f_n \ne 0$ in measure.

b) Let $g_n = n^2 \chi_{[0,\frac{1}{n}]} \in L_p[0,1]$, where $1 \le p < \infty$. Show that $g_n \to 0$ in measure, but $g_n \ne 0$ weakly.

c) Let A_n be a measurable subset of [0, 1] for each $n, \chi_{A_n} \in L_1$, and $\chi_{A_n} \to f$ weakly in L_1 . Show that f is not necessarily a characteristic function of some measurable set.

4. Let $f : \mathbf{R} \to \mathbf{R}$. If $f \in L_1(m) \cap L_2(m)$ where *m* denotes the Lebesgue measure, prove that

a)
$$f \in L_p(m) \quad \forall 1 \le p \le 2$$

b) $\lim_{p \to 1^+} ||f||_p = ||f||_1.$

\mathbf{TMS}

Spring 2010

Real Analysis

1. a) Show that $f(x) = \frac{\ln x}{x^2}$ is Lebesgue integrable over $[1, \infty)$ and $\int f d\mu = 1$ b) A set E in \mathbb{R} is said to be **null** if for any $\epsilon > 0$ we can cover E with countably many open intervals the sum of whose lengths is less than ϵ , i.e., $E \subset \bigcup_{n=1}^{\infty} (a_n, b_n)$ and $\sum_{1}^{\infty} (b_n - a_n) < \epsilon$.

Show that any countable set in \mathbb{R} is **null**.

2. Using Lebesgue Dominated Covergence Theorem, compute

$$\lim_{k \to \infty} \sum_{n=1}^{\infty} e^{-kn^2}$$

Hint: Consider \mathbb{N} with the counting measure. Let

 $f_k : \mathbb{N} \to [0, \infty)$ be defined as $f_k(n) = e^{-kn^2}$. Use LDCT.

- 3. a) Suppose $(f_n) \to f$ in measure and $(g_n) \to g$ in measure. Show $(f_n + g_n) \to f + g$ in measure.
 - b) Let (f_n) , (g_n) be sequences of measurable functions such that $(f_n) \to f$ in measure, $(g_n) \to g$ in measure and $f_n = g_n$ a.e. for every n. Show that f = g a.e.
- 4. State Egoroff's theorem. Prove that in Egoroff's theorem the hypothesis $\mu(X) < \infty$ can be replaced by $|f_n| \leq g$ for all n where $g \in L^1(\mu)$

\mathbf{TMS}

September 2011

Real Analysis

I. a) Let A_n be a sequence of measurable sets with $\sum_{n=1}^{\infty} \mu(A_n) < \infty$. Prove that $\mu(\overline{lim}A_n) = 0$

Hint: $\overline{lim}A_n = \bigcap_{k=1}^{\infty} \cup_{n \ge k} A_n$

b) Let $f \in L_p(\mu)$ and $\epsilon > 0$. Show that

$$\mu(\{x \in X : |f(x)| \ge \epsilon\}) \le \epsilon^{-p} \int |f|^p d\mu$$

- II. a) Show that $f(x) = \frac{1}{\sqrt{x}}$ is Lebebsgue integrable over [0, 1]. b) Compute $\lim_n \int_0^1 \frac{n \sin x}{1+n^2\sqrt{x}} dx$ and justify your calculations.
- III. Assume $\mu(X) < \infty$. If f_n is a sequence of measurable functions on X such that $f_n \to f$ a.e. then prove that $f_n \to f$ [meas] also holds. State the theorem(s) you used.
- IV. Assume that $f : [a, b] \to \mathbb{R}$ and $g : [a, b] \to \mathbb{R}$ are two continuous functions such that $f(x) \leq g(x)$ holds for all $x \in [a, b]$. Set $A = \{(x, y) \in \mathbb{R}^2 : x \in [a, b] \text{ and } f(x) \leq y \leq g(x)\}.$
 - a) Show that A is a closed set (and hence a measurable subset of \mathbb{R}^2)

b) If $h: A \to \mathbb{R}$ is a continuous function, then show that h is Lebesque integrable over A and that

$$\int_{A} h d\lambda = \int_{a}^{b} (\int_{f(x)}^{g(x)} h(x, y) dy) dx$$

METU MATHEMATICS DEPARTMENT REAL ANALYSIS SEPTEMBER 2012 - TMS EXAM

1. Prove disprove:

a) If $f: \mathbb{R} \to \mathbb{R}$ is Lebesgue integrable then the improper integral $\int_{-\infty}^{\infty} f(x) \, dm(x)$ is convergent.

b) If $\int_{-\infty}^{\infty} f(x) dm(x)$ is convergent then $f \in L^1$.

2. Compute
$$\lim_{n\to\infty}\sum_{k=0}^{\infty} \left(\frac{n}{2n+k}\right)^k$$

(Hint: Use a convergence theorem)

3. Let $E \subset [0,1] \times [0,1]$ have the property that every horizontal section Ey is countable and every vertical section Ex has countable complement $[0,1] \setminus E_x$. Prove that E is not L-measurable.

4. Let (X, σ, μ) be a measure space.

a) Define convergence in measure

b) Let $\phi : \mathbb{C} \to \mathbb{C}$ be uniformly continuous. Let $f_n, f : X \to C$ be measurable and $f_n \to f$ in measure.

Show that $\phi \circ f_n$ converges to $\phi \circ f$ in measure.

METU MATHEMATICS DEPARTMENT REAL ANALYSIS SEPTEMBER 2013 - TMS EXAM

1. (35 pts.) Denote by χ_A the characteristic function of $A \subseteq [0, 1]$

e en en de la seconda de la

a) Prove that $\psi(t,x) := (t, \frac{x + \chi_A(t)}{2})$ is measurable if and only if A is measurable

b) Suppose A is measurable, calculate the integral $\int_{[0,1]\times[0,1]} \psi d\mu$ where μ is the Lebesgue measure on $[0,1]\times[0,1]$

c) Give an example of $A \subseteq [0, 1]$ which is not Lebesgue measurable.

2. (20 pts.) Let μ be counting measure on N. Interpret Fatou's lemma, the monotone and the dominated convergence theorems as statements about infinite series.

3. (25 pts.) a) Give an example of a continuous function $f : \mathbb{R} \to \mathbb{R}$ which maps a Lebesgue measurable set onto a non-Lebesgue measurable set.

b) Why the condinition $|f_n| \leq g \in L_1$ in the Dominated convergence theorem cannot be replaced by $|f_n(t)| \leq M \in \mathbb{R}^+$.

4. (20 pts.) Given the counting measure ν on $P(\mathbb{R})$ and the Lebesgue measure μ on the Lebesgue algebra $\sum(\mathbb{R})$.

a) Show that μ is absolutely continuous with respect to ν .

b) Explain why the Radon-Nikodym theorem is not applicable to measures ν and μ .

METU MATHEMATICS DEPARTMENT REAL ANALYSIS SEPTEMBER 2014 - TMS EXAM

1.

- (a) State the Lebesgue Dominated Convergence Theorem.
- (b) Use (a) to evaluate

$$\lim_{n \to \infty} \int_0^1 \frac{dx}{\cos(x + \frac{1}{n}) x^{\frac{1}{n}}}$$

where dx denotes integration with respect to Lebesgue measure.

[Be sure to explain why the hypotheses are satisfied when you quote (a).]

2. Either prove or provide an explicit counterexample to each of the following assertions: (you may quote without proof familiar relations and containments between L^{p} -spaces)

- (a) If $f, g \in L^2([0, 1])$ then $fg \in L^2([0, 1])$. (Lebesgue measure)
- (b) If $f, g \in L^2(\mathbb{R})$ then $fg \in L^2(\mathbb{R})$. (Lebesgue measure)
- (c) If $f, g \in L^2(\mathbb{R})$ then $fg \in \ell^2$. (counting measure)

3. Let λ denote Lebesgue measure on the real line.

(a) Prove that there is an open set \mathcal{O} that is dense in \mathbb{R} with $\lambda(\mathcal{O}) < 1$.

(b) Let \mathcal{O} be any set satisfying the conclusion to part (a). Prove that $\mathbb{R} \setminus \mathcal{O}$ is uncountable.

(c) Let \mathcal{O} be any set satisfying the conclusion to part (a). Prove that $\mathbb{R} \setminus \mathcal{O}$ is not compact.

4. Let *m* be Lebesgue measure on [0, 1] and *n* be counting measure and $f(x,y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y. \end{cases}$

(a) Show $\int \int f(x,y)dm(x)dn(y) \neq \int \int f(x,y)dn(y)dm(x)$.

(b) State the Fubini-Tonelli Theorem and state why the above result does not contradict the Theorem.

METU MATHEMATICS DEPARTMENT REAL ANALYSIS SEPTEMBER 2015 - TMS EXAM

1. Formulate the Egoroff theorem (= the third Littlewood principle) and show that it fails in every measure space with infinite σ -finite measure. Hint: Consider $f_n = \chi_{[n,n+1]}$

2. Let (X, \mathcal{A}, μ) be a measure space, and suppose $X = \bigcup_n X_n$, where $\{X_n\}_{n=1}^{\infty}$ is a pairwise disjoint collection of measurable subsets of X. Use the monotone convergence theorem and the linearity of the integral to prove that, if f is a non-negative measurable real-valued function on X,

$$\int_X f d\mu = \sum_n \int_{X_n} f d\mu$$

Hint: Let
$$f_n = \sum_{k=1}^n f \chi_{X_k} = f \chi_{\cup_1^n X_k}$$

3. Evaluate $\lim_{k\to\infty}\sum_{n=1}^{\infty}e^{-kn^2}$ and prove your answer by using a measure theory theorem.

Hint: Let $f_k : \mathbb{N} \to [0, \infty)$ be defined by $f_k(n) = e^{-kn^2}, n \in \mathbb{N}$.

4. Using the Fubini/Tonelli theorems to justify all steps, evaluate the integral

$$\int_{0}^{1} \int_{y}^{1} x^{-3/2} \cos(\frac{\pi y}{2x}) dx dy$$

Hint: Consider $\int \int |x^{-3/2} \cos(\frac{\pi y}{2x})| dy dx$ and apply to Tonelli's theorem.

METU - Department of Mathematics Graduate Preliminary Exam

Real Analysis

February, 2009

.

Duration: 180 min.

1. Characterize metric spaces X for which the open sets form a σ -algebra.

2. a) Show that if $f : \mathbb{R} \to \mathbb{R}$ is continuous almost everywhere then f is a Lebesgue measurable function.

b) Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function. Show that the derivative f' of f is a Lebesgue measurable function.

3. Construct an example of a subset $D \subseteq \mathbb{R}^2$ satisfying the following properties:

(i) the Lebesgue measure of $D \cap U$ is zero for every open set $U \subseteq \mathbb{R}^2$;

(ii) the set $D \cap U$ is of the second category for every nonempty open set $U \subseteq \mathbb{R}^2$;

(iii) for every point $(x_0, y_0) \in D$ the line $y = y_0 + x_0 - x$ is a subset of D.

4. a) State the Radon - Nikodym theorem for the interval [0, 1] with the Lebesgue measure.

b) State the Hahn decomposition theorem.

c) Derive the Hahn decomposition theorem for the interval [0, 1] from the Radon - Nikodym theorem and the Jordan decomposition theorem.

M.E.T.U

Department of Mathematics Preliminary Exam - Feb. 2011

REAL ANALYSIS

1. a) Let $\{f_n\}$ be a sequence of measurable functions on a measure space (X, S, μ) such that $\{f_n(x)\}$ is a bounded sequence for each $x \in X$. Show that the set

$$E = \{x \in X : \lim f_n(x) exists\}$$

is a measurable set.

b) Let (X, S, μ) be a measure space. Assume that $f : X \to \mathbb{R}$ is a measurable function and $g : \mathbb{R} \to \mathbb{R}$ is a continuous function. Show that the composition function gof is a measurable function.

2. a) Let (X, \sum, μ) , (Y, Λ, ν) be measure spaces and \mathcal{A} be algebra of subsets of $X \times Y$ generated by rectangles $A \times B$, $A \in \sum, B \in \Lambda$. By using of the Monotone Convergence Theorem show that the following function

$$\mu \times \nu : \mathcal{A} \to \overline{\mathbb{R}}_+$$
 defined by $\mu \times \nu(A \times B) := \mu(A) \cdot \nu(B)$

is a pre-measure.

b) Let $A = ((a_{ij}))_{ij \in \mathbb{N}}$ be an infinite matrix of real numbers. Suppose $\lim_{i \to \infty} a_{ij} = a_j \in \mathbb{R}$ and $\sup_i |a_{ij}| = b_j$ with $\sum_{j=1}^{\infty} b_j < \infty$. By application of the Dominated Convergence Theorem show that $\lim_{i \to \infty} \sum_{j=1}^{\infty} |a_{ij} - a_j| = 0$

3. a) Formulate Fubini's theorem.

b) Show that if
$$f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$
, with $f(0,0) = 0$, then
$$\int_0^1 [\int_0^1 f(x,y)dx]dy = -\frac{\pi}{4}, \quad \int_0^1 [\int_0^1 f(x,y)dy]dx = \frac{\pi}{4}$$

c) Can f above be integrable on $[0,1] \times [0,1]$? Explain.

4. Let $a \in \mathbb{R}$ and $K = \{f \in C^2[0 \ 1] : f(0) = f(1) = 0, f'(0) = a\}$. Find $\min_{f \in k} \int_0^1 (f''(x))^2 dx$ and a function $f \in K$ on which the minimum is attained. [Hint: apply Cauchy-Schwartz inequality to functions $\varphi(x) = f''(x), \psi(x) = 1 - x$]

METU MATHEMATICS DEPARTMENT REAL ANALYSIS

FEBRUARY 2013 - TMS EXAM

Signature:

Last Name:

Name:

1.) Let (X, S, μ) be a measure space, T be a metric space. Let $f : X \times T \to \mathbb{R}$ be a function. Assume that $f(\cdot, t)$ is measurable for each $t \in T$ and $f(x, \cdot)$ is continuous for each $x \in X$. Prove that if there exists an integrable function g such that for each $t \in T$, $|f(t, x)| \leq g(x)$ for $a \cdot a \cdot x$, then $F : T \to \mathbb{R}$, $F(t) = \int f(x, t) d\mu(x)$ is continuous.

2.) Let $f : \mathbb{R} \to \mathbb{R}$ be measurable and positive. Consider the set of all points in the upper half-plane being below the graph of $f : A_f = \{(x, y) \in \mathbb{R}^2 : 0 \le y < f(x)\}$

Show that A_f is $\lambda \times \lambda$ - measurable and $(\lambda \times \lambda)(A) = \int f(x) dx$.

3.) For a function $f \in L_1(\mu) \cap L_2(\mu)$ establish the following properties:

- a) $f \in L_p(\mu)$ for each $1 \le p \le 2$; and
- b) $\lim_{p \to 1^+} \| f \|_p = \| f \|_1$

4.) If $\{f_n\}$ is a norm bounded sequence of $L_2(\mu)$ then show that $\frac{f_n}{n} \to 0$ a.e. holds.

METU MATHEMATICS DEPARTMENT REAL ANALYSIS FEBRUARY 2014 - TMS EXAM

1.

a) State and prove Fatou's Lemma.

b) Show that Fatou's Lemma may not be true, even in the presence of uniform convergence.

(Hint: You may find
$$f_n(x) = -\frac{1}{n}\chi_{[0,n]}$$
 on \mathbb{R} useful).

2. Let *E* be a measurable set of finite measure; (f_n) be a sequence of measurable real valued fuction on *E*. Show that for given $\epsilon > 0$ and $\delta > 0 \exists$ measurable *A* in *E* with measure $m(A) < \delta$ and a natural number *N* such that $\forall x \notin A$ and all $n \geq N$, $|f_n(x) - f(x)| < \epsilon$.

3.

a) Let (X, \wedge, μ) be a finite measure space. Let $(f_n), (g_n)$ be two sequences of measurable functions and $f_n \to f$ in measure μ and $g_n \to g$ in measure μ . Show that $f_n g_n \to fg$ in measure.

b) By considering $f_n(X) = \sqrt{x^4 + \frac{x}{n}}$ and $f(x) = x^2$ on $(0, \infty)$ with Lebesgue measure, show that the conclusion may fail if the space has no finite measure.

4. Let $f : \mathbb{R} \to \mathbb{R}$ be a Lebesgue integrable function. Show that $\lim_{t \to \infty} \int f(x) \cos(xt) d\lambda(x) = 0 \quad \text{when} \quad \lambda \quad \text{is the Lebesgue measure.}$

1

- 1) Let (X, M, μ) be a measure space, $g : X \to : [0, \infty]$ be a non-negative μ measurable function. For each $E \in M$ define $\nu(E) = \int g\chi_E d\mu$.
 - a) Show that ν is a measure on (X, M).
 - b) Show that if f is any non-negative μ measurable function then $\int f d\nu = \int f g d\mu$.
- 2) Let (X, M, μ) be a finite measure space, E_k be a sequence of sets in μ such that μ(E_k) > 1/100 ∀k. Let F be the set of points x ∈ X which belong to infinitely many of these sets, E_k.
 - a) Show that $E \in M$.
 - b) Show that $\mu(E) \ge 1/100$
 - c) Show that conclusion (b) may fail if $\mu(X) = \infty$.
- 3) a) State the Dominated Convergence Theorem.

b) Let μ be a measure on the Borel subsets of \mathbb{R} , and $f \in L^1(\mu)$. Prove that the function $F(x) = \int_{(-\infty,x]} f d\mu$ is continuous from the left. c) Show that if $x \in \mathbb{R}$ and $\mu(x) = 0$ then F is continuous from the right at x.

4) Let μ, ν be finite measures on (X, M) and $\nu = \nu_1 + \nu_2$ be the Jordan decomposition of ν so that $\nu_1 \perp \mu$ and $\nu_2 \ll \mu$. Let $\lambda = \nu + \mu$.

a) Show that if A,B is a Hahn Decomposition for ν_1, μ then it is also a Hahn Decomposition for ν_1, ν_2 .

b) Show that $\nu \ll \lambda$

c) Let $f = \frac{d\nu}{d\lambda}$. Show that $0 \le f \le 1$ $\lambda - a.e.$ and the two sets $f^{-1}(\{1\}), f^{-1}([0,1))$ form a Hahn Decomposition for ν_1, μ .

- 5) Let $f : \mathbb{R} \to \mathbb{R}$ be such that $\int_{-\infty}^{\infty} f dx$ converges in the usual Riemann sense, let m denote the Lebesgue measure on \mathbb{R} .
 - a) Show that if $f(x) \ge 0$ m-a.e then $f \in L^1(m)$.

b) Give an example showing that the non-negativity assumption in part (a) is necessary.

Feb. 2016

1) Let (X, \sum, μ) be a measure space and let $f : X \to [0, \infty]$ be measurable. For $E \in \sum$ define $\nu(E) = \int_E f d\mu$ Show that ν is a measure (You will need a convergence theorem for countable additivity)

2) Let
$$f_n(x) = \frac{n^{3/2}x}{1+n^2x^2}$$
 Show that $\lim_{n \to \infty} \int_0^1 f_n(x) dx = 0$

3) Let (f_n) be a sequence of integrable functions such that $f_n \to f$ a.e. with f integrable. Then prove that $\int |f_n - f| \to 0 \Leftrightarrow \int |f_n| \to \int |f|$.

4) Let h and g be integrable functions on (X, μ) and (Y, ν) , and define f(x,y) = h(x)g(y) Then show that f is integrable on $X \times Y$ and

$$\int_{X \times Y} f d(\mu \times \nu) = \int_X h d\mu \int_Y g d\nu$$

Hint: Take $h = X_A$, $g = X_B$ where $A \subset X, B \subset Y$ are measurable sets.

Preliminary Exam - February, 2017 Real Analysis

- 1) Let (X, \mathcal{M}, μ) be a measure space. Define $\mu^* : \mathcal{P}(X) \to [0, \infty]$ by $\mu^*(A) = \inf\{\mu(E) : E \in \mathcal{M}, A \subset E\}$. Prove that
 - a) μ^* is an outer measure on X.
 - b) $\forall A \in \mathcal{P}(X) \exists E \in \mathcal{M} \text{ such that } A \subset E \text{ and } \mu^*(A) = \mu(E).$
- 2) Suppose that {f_n} is a sequence of Lebesgue measurable functions on [0, 1] such that lim ∫₀¹ |f_n|dm = 0 and there is an integrable function g on [0, 1] such that |f_n|² ≤ g, for each n.
 a) Prove that lim ∫₀¹ |f_n|²dm = 0
 - b) Prove that if $\lim_n f_n = f$ exists a.e. then f integrable on [0, 1] and $\int f dm = 0$
- 3) If f is a complex valued measurable function on (X, \mathcal{M}, μ) , define

$$R_f = \{ z : \mu(\{ x : |f(x) - z| < \epsilon \}) > 0 \ \forall \epsilon > 0 \}$$

Show that

- a) R_f is closed. b) If $f \in L^{\infty}$ then R_f is compact.
- 4) Let (X, \mathcal{M}, μ) be an arbitrary measure space and define ν on \mathcal{M} by $\nu(A) = 0$ if $\mu(A) = 0$; and $\nu(A) = \infty$ if $\mu(A) > 0$.
 - a) Show that ν is a measure on X and $\nu \ll \mu$. b) Find $\frac{d\nu}{d\mu}$.

GRADUATE PRELIMINARY EXAMINATION ANALYSIS I (REAL ANALYSIS) Fall 2005 September 12th, 2005

Duration: 3 hours

- **1.** Let (X, S, μ) be a measure space, T be a metric space. Let $f : X \times T \to \mathbf{R}$ be a function. Assume that $f(\cdot, t)$ is measurable for each $t \in T$ and $f(x, \cdot)$ is continuous for each $x \in X$. Prove that if there exists an integrable function g such that for each $t \in T$, $|f(x,t)| \leq g(x)$ for a.a.x, then $F : T \to \mathbf{R}$, $F(t) = \int f(x,t)d\mu(x)$ is continuous.
- **2.** Let \mathcal{G} be a set of half-open intervals in **R**. Prove that $\bigcup_{G \in \mathcal{G}} G$ is Lebesgue measurable.
- **3.** a) Let $f_n = \sin n^2 x \in L_p[0, 1]$, where $1 \le p < \infty$. Show that $f_n \to 0$ weakly, but $f_n \ne 0$ in measure.

b) Let $g_n = n^2 \chi_{[0,\frac{1}{n}]} \in L_p[0,1]$, where $1 \le p < \infty$. Show that $g_n \to 0$ in measure, but $g_n \ne 0$ weakly.

c) Let A_n be a measurable subset of [0, 1] for each $n, \chi_{A_n} \in L_1$, and $\chi_{A_n} \to f$ weakly in L_1 . Show that f is not necessarily a characteristic function of some measurable set.

4. Let $f : \mathbf{R} \to \mathbf{R}$. If $f \in L_1(m) \cap L_2(m)$ where *m* denotes the Lebesgue measure, prove that

a)
$$f \in L_p(m) \quad \forall 1 \le p \le 2$$

b) $\lim_{p \to 1^+} ||f||_p = ||f||_1.$

\mathbf{TMS}

Spring 2010

Real Analysis

1. a) Show that $f(x) = \frac{\ln x}{x^2}$ is Lebesgue integrable over $[1, \infty)$ and $\int f d\mu = 1$ b) A set E in \mathbb{R} is said to be **null** if for any $\epsilon > 0$ we can cover E with countably many open intervals the sum of whose lengths is less than ϵ , i.e., $E \subset \bigcup_{n=1}^{\infty} (a_n, b_n)$ and $\sum_{1}^{\infty} (b_n - a_n) < \epsilon$.

Show that any countable set in \mathbb{R} is **null**.

2. Using Lebesgue Dominated Covergence Theorem, compute

$$\lim_{k \to \infty} \sum_{n=1}^{\infty} e^{-kn^2}$$

Hint: Consider \mathbb{N} with the counting measure. Let

 $f_k : \mathbb{N} \to [0, \infty)$ be defined as $f_k(n) = e^{-kn^2}$. Use LDCT.

- 3. a) Suppose $(f_n) \to f$ in measure and $(g_n) \to g$ in measure. Show $(f_n + g_n) \to f + g$ in measure.
 - b) Let (f_n) , (g_n) be sequences of measurable functions such that $(f_n) \to f$ in measure, $(g_n) \to g$ in measure and $f_n = g_n$ a.e. for every n. Show that f = g a.e.
- 4. State Egoroff's theorem. Prove that in Egoroff's theorem the hypothesis $\mu(X) < \infty$ can be replaced by $|f_n| \leq g$ for all n where $g \in L^1(\mu)$

\mathbf{TMS}

September 2011

Real Analysis

I. a) Let A_n be a sequence of measurable sets with $\sum_{n=1}^{\infty} \mu(A_n) < \infty$. Prove that $\mu(\overline{lim}A_n) = 0$

Hint: $\overline{lim}A_n = \bigcap_{k=1}^{\infty} \cup_{n \ge k} A_n$

b) Let $f \in L_p(\mu)$ and $\epsilon > 0$. Show that

$$\mu(\{x \in X : |f(x)| \ge \epsilon\}) \le \epsilon^{-p} \int |f|^p d\mu$$

- II. a) Show that $f(x) = \frac{1}{\sqrt{x}}$ is Lebebsgue integrable over [0, 1]. b) Compute $\lim_n \int_0^1 \frac{n \sin x}{1+n^2 \sqrt{x}} dx$ and justify your calculations.
- III. Assume $\mu(X) < \infty$. If f_n is a sequence of measurable functions on X such that $f_n \to f$ a.e. then prove that $f_n \to f$ [meas] also holds. State the theorem(s) you used.
- IV. Assume that $f : [a, b] \to \mathbb{R}$ and $g : [a, b] \to \mathbb{R}$ are two continuous functions such that $f(x) \leq g(x)$ holds for all $x \in [a, b]$. Set $A = \{(x, y) \in \mathbb{R}^2 : x \in [a, b] \text{ and } f(x) \leq y \leq g(x)\}.$
 - a) Show that A is a closed set (and hence a measurable subset of \mathbb{R}^2)

b) If $h: A \to \mathbb{R}$ is a continuous function, then show that h is Lebesque integrable over A and that

$$\int_{A} h d\lambda = \int_{a}^{b} (\int_{f(x)}^{g(x)} h(x, y) dy) dx$$

METU MATHEMATICS DEPARTMENT REAL ANALYSIS SEPTEMBER 2012 - TMS EXAM

1. Prove disprove:

a) If $f: \mathbb{R} \to \mathbb{R}$ is Lebesgue integrable then the improper integral $\int_{-\infty}^{\infty} f(x) \, dm(x)$ is convergent.

b) If $\int_{-\infty}^{\infty} f(x) dm(x)$ is convergent then $f \in L^1$.

2. Compute
$$\lim_{n\to\infty}\sum_{k=0}^{\infty} \left(\frac{n}{2n+k}\right)^k$$

(Hint: Use a convergence theorem)

3. Let $E \subset [0,1] \times [0,1]$ have the property that every horizontal section Ey is countable and every vertical section Ex has countable complement $[0,1] \setminus E_x$. Prove that E is not L-measurable.

4. Let (X, σ, μ) be a measure space.

a) Define convergence in measure

b) Let $\phi : \mathbb{C} \to \mathbb{C}$ be uniformly continuous. Let $f_n, f : X \to C$ be measurable and $f_n \to f$ in measure.

Show that $\phi \circ f_n$ converges to $\phi \circ f$ in measure.

METU MATHEMATICS DEPARTMENT REAL ANALYSIS SEPTEMBER 2013 - TMS EXAM

1. (35 pts.) Denote by χ_A the characteristic function of $A \subseteq [0,1]$

e en en de la seconda de la

a) Prove that $\psi(t,x) := (t, \frac{x + \chi_A(t)}{2})$ is measurable if and only if A is measurable

b) Suppose A is measurable, calculate the integral $\int_{[0,1]\times[0,1]} \psi d\mu$ where μ is the Lebesgue measure on $[0,1]\times[0,1]$

c) Give an example of $A \subseteq [0, 1]$ which is not Lebesgue measurable.

2. (20 pts.) Let μ be counting measure on N. Interpret Fatou's lemma, the monotone and the dominated convergence theorems as statements about infinite series.

3. (25 pts.) a) Give an example of a continuous function $f : \mathbb{R} \to \mathbb{R}$ which maps a Lebesgue measurable set onto a non-Lebesgue measurable set.

b) Why the condinition $|f_n| \leq g \in L_1$ in the Dominated convergence theorem cannot be replaced by $|f_n(t)| \leq M \in \mathbb{R}^+$.

4. (20 pts.) Given the counting measure ν on $P(\mathbb{R})$ and the Lebesgue measure μ on the Lebesgue algebra $\sum(\mathbb{R})$.

a) Show that μ is absolutely continuous with respect to ν .

b) Explain why the Radon-Nikodym theorem is not applicable to measures ν and μ .

METU MATHEMATICS DEPARTMENT REAL ANALYSIS SEPTEMBER 2014 - TMS EXAM

1.

- (a) State the Lebesgue Dominated Convergence Theorem.
- (b) Use (a) to evaluate

$$\lim_{n \to \infty} \int_0^1 \frac{dx}{\cos(x + \frac{1}{n}) x^{\frac{1}{n}}}$$

where dx denotes integration with respect to Lebesgue measure.

[Be sure to explain why the hypotheses are satisfied when you quote (a).]

2. Either prove or provide an explicit counterexample to each of the following assertions: (you may quote without proof familiar relations and containments between L^{p} -spaces)

- (a) If $f, g \in L^2([0, 1])$ then $fg \in L^2([0, 1])$. (Lebesgue measure)
- (b) If $f, g \in L^2(\mathbb{R})$ then $fg \in L^2(\mathbb{R})$. (Lebesgue measure)
- (c) If $f, g \in L^2(\mathbb{R})$ then $fg \in \ell^2$. (counting measure)

3. Let λ denote Lebesgue measure on the real line.

(a) Prove that there is an open set \mathcal{O} that is dense in \mathbb{R} with $\lambda(\mathcal{O}) < 1$.

(b) Let \mathcal{O} be any set satisfying the conclusion to part (a). Prove that $\mathbb{R} \setminus \mathcal{O}$ is uncountable.

(c) Let \mathcal{O} be any set satisfying the conclusion to part (a). Prove that $\mathbb{R} \setminus \mathcal{O}$ is not compact.

4. Let *m* be Lebesgue measure on [0, 1] and *n* be counting measure and $f(x,y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y. \end{cases}$

(a) Show $\int \int f(x,y)dm(x)dn(y) \neq \int \int f(x,y)dn(y)dm(x)$.

(b) State the Fubini-Tonelli Theorem and state why the above result does not contradict the Theorem.

METU MATHEMATICS DEPARTMENT REAL ANALYSIS SEPTEMBER 2015 - TMS EXAM

1. Formulate the Egoroff theorem (= the third Littlewood principle) and show that it fails in every measure space with infinite σ -finite measure. Hint: Consider $f_n = \chi_{[n,n+1]}$

2. Let (X, \mathcal{A}, μ) be a measure space, and suppose $X = \bigcup_n X_n$, where $\{X_n\}_{n=1}^{\infty}$ is a pairwise disjoint collection of measurable subsets of X. Use the monotone convergence theorem and the linearity of the integral to prove that, if f is a non-negative measurable real-valued function on X,

$$\int_X f d\mu = \sum_n \int_{X_n} f d\mu$$

Hint: Let
$$f_n = \sum_{k=1}^n f \chi_{X_k} = f \chi_{\cup_1^n X_k}$$

3. Evaluate $\lim_{k\to\infty}\sum_{n=1}^{\infty}e^{-kn^2}$ and prove your answer by using a measure theory theorem.

Hint: Let $f_k : \mathbb{N} \to [0, \infty)$ be defined by $f_k(n) = e^{-kn^2}, n \in \mathbb{N}$.

4. Using the Fubini/Tonelli theorems to justify all steps, evaluate the integral

$$\int_{0}^{1} \int_{y}^{1} x^{-3/2} \cos(\frac{\pi y}{2x}) dx dy$$

Hint: Consider $\int \int |x^{-3/2} \cos(\frac{\pi y}{2x})| dy dx$ and apply to Tonelli's theorem.